Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th...Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.展开更多
The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool...The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool design and plays an essential role in determining the machining accuracy of the workpiece.Researchers have extensively studied methods to model,extract,optimize,and measure the geometric errors that affect the geometric accuracy of machine tools.This paper provides a comprehensive review of the state-of-the-art approaches and an overview of the latest research progress associated with geometric accuracy design in CNC machine tools.This paper explores the interrelated aspects of CNC machine tool accuracy design:modeling,analysis and optimization.Accuracy analysis,which includes geometric error modeling and sensitivity analysis,determines a machine tool’s output accuracy through its volumetric error model,given the known accuracy of its individual components.Conversely,accuracy allocation designs the accuracy of the machine tool components according to given output accuracy requirements to achieve optimization between the objectives of manufacturing cost,quality,reliability,and environmental impact.In addition to discussing design factors and evaluation methods,this paper outlines methods for verifying the accuracy of design results,aiming to provide a practical basis for ensuring that the designed accuracy is achieved.Finally,the challenges and future research directions in geometric accuracy design are highlighted.展开更多
Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This...Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This study proposes an intelligent approach for tool setting in vibration cutting using machine vision and hearing,divided into two steps.In the first step,machine vision is employed to achieve rough precision in tool setting within tens of micrometers.Subsequently,in the second step,machine hearing utilizes sound pickup to capture vibration audio signals,enabling fine tool adjustment within 1μm precision.The relationship between the spectral intensity of vibration audio and cutting depth is analyzed to establish criteria for tool–workpiece contact.Finally,the efficacy of this approach is validated on an ultra-precision platform,demonstrating that the automated tool-setting process takes no more than 74 s.The total cost of the vision and hearing sensors is less than$1500.展开更多
In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic op...In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic operating conditions increase the risk of fatigue damage in CNC machine tool bearings,highlighting the urgent demand for rapid and accurate fault diagnosis methods that can maintain production efficiency and extend equipment uptime.However,varying conditions induce feature distribution shifts,and scarce fault samples limitmodel generalization.Therefore,this paper proposes a causal-Transformer-based meta-learning(CTML)method for bearing fault diagnosis in CNC machine tools,comprising three core modules:(1)the original bearing signal is transformed into a multi-scale time-frequency feature space using continuous wavelet transform;(2)a causal-Transformer architecture is designed to achieve feature extraction and fault classification based on the physical causal law of fault propagation;(3)the above mechanisms are integrated into a model-agnostic meta-learning(MAML)framework to achieve rapid cross-condition adaptation through an adaptive gradient pruning strategy.Experimental results using the multiple bearing dataset show that under few-shot cross-condition scenarios(3-way 1-shot and 3-way 5-shot),the proposed CTML outperforms benchmark models(e.g.,Transformer,domain adversarial neural networks(DANN),and MAML)in terms of classification accuracy and sensitivity to operating conditions,while maintaining a moderate level of model complexity.展开更多
Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining qualit...Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining quality of manufactured parts,it has been a popular topic for academic and industrial research for many years.A great deal of research work has been carried out since the 1970s for solving the problem and improving the machining accuracy.Researchers have studied how to measure,detect,model,identify,reduce,and compensate the geometric errors.This paper presents a thorough review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to geometric errors.Recent advances in measuring the geometrical errors of machine tools are summarized,and different kinds of error identification methods of translational axes and rotation axes are illustrated respectively.Besides,volumetric geometric error modeling,tracing,and compensation techniques for five-axis machine tools are emphatically introduced.Finally,research challenges in order to improve the volumetric accuracy of machine tools are also highlighted.展开更多
Geometric error is the main factor affecting the machining accuracy of hybrid machine tools.Kinematic calibration is an effective way to improve the geometric accuracy of hybrid machine tools.The necessity to measure ...Geometric error is the main factor affecting the machining accuracy of hybrid machine tools.Kinematic calibration is an effective way to improve the geometric accuracy of hybrid machine tools.The necessity to measure both position and orientation at each pose,as well as the instability of identification in case of incomplete measurements,severely affects the application of traditional calibration methods.In this study,a kinematic calibration method with high measurement efficiency and robust identification is proposed to improve the kinematic accuracy of a five-axis hybrid machine tool.First,the configuration is introduced,and an error model is derived.Further,by investigating the mechanism error characteristics,a measurement scheme that only requires tool centre point position error measurement and one alignment operation is proposed.Subsequently,by analysing the effects of unmeasured degrees of freedom(DOFs)on other DOFs,an improved nonlinear least squares method based on virtual measurement values is proposed to achieve stable parameter identification in case of incomplete measurement,without introducing additional parameters.Finally,the proposed calibration method is verified through simulations and experiments.The proposed method can efficiently accomplish the kinematic calibration of the hybrid machine tool.The accuracy of the hybrid machine tool is significantly improved after calibration,satisfying actual aerospace machining requirements.展开更多
Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracer...Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.展开更多
Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote m...Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote machine tool intelligence and has attracted considerable research interest.However,there is a lack of clear and systematic analyses on how the digital twin technology enables machine tool intelligence.Herein,digital twin modeling was identified as an enabling technology for machine tool intelligence based on a comparative study of the characteristics of machine tool intelligence and digital twin.The review then delves into state-of-the-art digital twin modelingenabled machine tool intelligence,examining it from the aspects of data-based modeling and mechanism-data dual-driven modeling.Additionally,it highlights three bottleneck issues facing the field.Considering these problems,the architecture of a digital twin machine tool(DTMT)is proposed,and three key technologies are expounded in detail:Data perception and fusion technology,mechanism-data-knowledge hybrid-driven digital twin modeling and virtual-real synchronization technology,and dynamic optimization and collaborative control technology for multilevel parameters.Finally,future research directions for the DTMT are discussed.This work can provide a foundation basis for the research and implementation of digital-twin modeling-enabled machine tool intelligence,making it significant for developing intelligent machine tools.展开更多
A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC mac...A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.展开更多
Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by us...Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by using kinematics of the multi body system is discussed.By means of 8031 single chip system,intelligent error compensation controller has been developed.The results of experiments on XH714 machining center show that the positioning accuracy is enhanced effectively by more than 50%.展开更多
With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that...With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that the frame is the main contributor.Then,influences of constraints,strut length and working ways of the main module have also been investigated.It can be concluded that when one of the main planes of the frame without linear drive unit is constrained,the largest whole stiffness can be acquired.And,the stiffness is much better when the main module is used in a vertical machine tool instead of a horizontal one.Finally,the principle of stiffness variation is summarized when the mobile platform reaches various positions within its working space and when various loads are applied.These achievements have provided critical instructions for the design of the main module for parallel machine tools.展开更多
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d...Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.展开更多
Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level ...Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.展开更多
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin...In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.展开更多
Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread e...Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.展开更多
Adaptable design aims to extend the utilities of design and product. The specific methods are developed for practical applications of adaptable design in the design of mechanical structures, including adaptable platfo...Adaptable design aims to extend the utilities of design and product. The specific methods are developed for practical applications of adaptable design in the design of mechanical structures, including adaptable platform, interface and module designs. Adaptable redesign problems are formulated as adaptable platform design under adaptability bound constraints. Analysis tools are then suggested for the implementation of the redesign of machine tool structures, including variation techniques based sensitivity analysis, similarity-based commonality analysis, performance improvement, and adaptability measures. The specific measure of adaptability for machine tool structures is measured through the quantification of the structural similarity and performance improvement gained from adaptable design. The method provides designers with an approach that brings adaptability into the design process, with considering the cost and benefits of such adaptability. The redesign of CNC spiral bevel gear cutting machine structures has been included to illustrate these concepts and methods.展开更多
Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as t...Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools.展开更多
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also...The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.展开更多
Small sample size problem is one of the main problems that heavy numerical control(NC) machine tools encounter in their reliability assessment. In order to deal with the small sample size problem, many indirect reliab...Small sample size problem is one of the main problems that heavy numerical control(NC) machine tools encounter in their reliability assessment. In order to deal with the small sample size problem, many indirect reliability data such as reliability data of similar products, expert opinion, and engineers' experience are used in reliability assessment. However, the existing mathematical theories cannot simultaneously process the above reliability data of multiple types, and thus imprecise probability theory is introduced. Imprecise probability theory can simultaneously process multiple reliability data by quantifying multiple uncertainties(stochastic uncertainty,fuzzy uncertainty, epistemic uncertainty, etc.) together. Although imprecise probability theory has so many advantages, the existing natural extension models are complex and the computation result is imprecise. Therefore,they need some improvement for the better application of reliability engineering. This paper proposes an improved imprecise reliability assessment method by introducing empirical probability distributions to natural extension model, and the improved natural extension model is applied to the reliability assessment of heavy NC machine tool spindle to illustrate its effectiveness.展开更多
基金supported by the Key R&D Program of Zhejiang Province(Nos.2023C01166 and 2024SJCZX0046)the Zhejiang Provincial Natural Science Foundation of China(Nos.LDT23E05013E05 and LD24E050009)the Natural Science Foundation of Ningbo(No.2021J150),China.
文摘Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.
基金Supported by the National Natural Science Foundation of China(Grant Nos.52375448,52275440).
文摘The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool design and plays an essential role in determining the machining accuracy of the workpiece.Researchers have extensively studied methods to model,extract,optimize,and measure the geometric errors that affect the geometric accuracy of machine tools.This paper provides a comprehensive review of the state-of-the-art approaches and an overview of the latest research progress associated with geometric accuracy design in CNC machine tools.This paper explores the interrelated aspects of CNC machine tool accuracy design:modeling,analysis and optimization.Accuracy analysis,which includes geometric error modeling and sensitivity analysis,determines a machine tool’s output accuracy through its volumetric error model,given the known accuracy of its individual components.Conversely,accuracy allocation designs the accuracy of the machine tool components according to given output accuracy requirements to achieve optimization between the objectives of manufacturing cost,quality,reliability,and environmental impact.In addition to discussing design factors and evaluation methods,this paper outlines methods for verifying the accuracy of design results,aiming to provide a practical basis for ensuring that the designed accuracy is achieved.Finally,the challenges and future research directions in geometric accuracy design are highlighted.
基金the financial support for this research provided by the National Natural Science Foundation of China(Grant Nos.52275470,124115301,and 52105458)the Natural Science Foundation of Beijing(Grant No.3222009).
文摘Vibration cutting has emerged as a promising method for creating surface functional microstructures.However,achieving precise tool setting is a time-consuming process that significantly impacts process efficiency.This study proposes an intelligent approach for tool setting in vibration cutting using machine vision and hearing,divided into two steps.In the first step,machine vision is employed to achieve rough precision in tool setting within tens of micrometers.Subsequently,in the second step,machine hearing utilizes sound pickup to capture vibration audio signals,enabling fine tool adjustment within 1μm precision.The relationship between the spectral intensity of vibration audio and cutting depth is analyzed to establish criteria for tool–workpiece contact.Finally,the efficacy of this approach is validated on an ultra-precision platform,demonstrating that the automated tool-setting process takes no more than 74 s.The total cost of the vision and hearing sensors is less than$1500.
基金the National Key Research and Development Program of China(Grant No.2022YFB3302700)the National Natural Science Foundation of China(Grant No.52375486)the Shanghai Rising-Star Program(Grant No.22QB1404200).
文摘In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic operating conditions increase the risk of fatigue damage in CNC machine tool bearings,highlighting the urgent demand for rapid and accurate fault diagnosis methods that can maintain production efficiency and extend equipment uptime.However,varying conditions induce feature distribution shifts,and scarce fault samples limitmodel generalization.Therefore,this paper proposes a causal-Transformer-based meta-learning(CTML)method for bearing fault diagnosis in CNC machine tools,comprising three core modules:(1)the original bearing signal is transformed into a multi-scale time-frequency feature space using continuous wavelet transform;(2)a causal-Transformer architecture is designed to achieve feature extraction and fault classification based on the physical causal law of fault propagation;(3)the above mechanisms are integrated into a model-agnostic meta-learning(MAML)framework to achieve rapid cross-condition adaptation through an adaptive gradient pruning strategy.Experimental results using the multiple bearing dataset show that under few-shot cross-condition scenarios(3-way 1-shot and 3-way 5-shot),the proposed CTML outperforms benchmark models(e.g.,Transformer,domain adversarial neural networks(DANN),and MAML)in terms of classification accuracy and sensitivity to operating conditions,while maintaining a moderate level of model complexity.
基金supported by the National Natural Science Foundation of China(Nos.52005413,52022082)Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JM-054)the Fundamental Research Funds for the Central Universities(No.D5000220135)。
文摘Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining quality of manufactured parts,it has been a popular topic for academic and industrial research for many years.A great deal of research work has been carried out since the 1970s for solving the problem and improving the machining accuracy.Researchers have studied how to measure,detect,model,identify,reduce,and compensate the geometric errors.This paper presents a thorough review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to geometric errors.Recent advances in measuring the geometrical errors of machine tools are summarized,and different kinds of error identification methods of translational axes and rotation axes are illustrated respectively.Besides,volumetric geometric error modeling,tracing,and compensation techniques for five-axis machine tools are emphatically introduced.Finally,research challenges in order to improve the volumetric accuracy of machine tools are also highlighted.
基金supported by the National Natural Science Foundation of China(Nos.52275442 and 51975319)。
文摘Geometric error is the main factor affecting the machining accuracy of hybrid machine tools.Kinematic calibration is an effective way to improve the geometric accuracy of hybrid machine tools.The necessity to measure both position and orientation at each pose,as well as the instability of identification in case of incomplete measurements,severely affects the application of traditional calibration methods.In this study,a kinematic calibration method with high measurement efficiency and robust identification is proposed to improve the kinematic accuracy of a five-axis hybrid machine tool.First,the configuration is introduced,and an error model is derived.Further,by investigating the mechanism error characteristics,a measurement scheme that only requires tool centre point position error measurement and one alignment operation is proposed.Subsequently,by analysing the effects of unmeasured degrees of freedom(DOFs)on other DOFs,an improved nonlinear least squares method based on virtual measurement values is proposed to achieve stable parameter identification in case of incomplete measurement,without introducing additional parameters.Finally,the proposed calibration method is verified through simulations and experiments.The proposed method can efficiently accomplish the kinematic calibration of the hybrid machine tool.The accuracy of the hybrid machine tool is significantly improved after calibration,satisfying actual aerospace machining requirements.
基金Supported by Natural Science Foundation of Shaanxi Province of China(Grant No.2021JM010)Suzhou Municipal Natural Science Foundation of China(Grant Nos.SYG202018,SYG202134).
文摘Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.
基金Supported by Tianjin Municipal University Science and Technology Development Foundation of China(Grant No.2021KJ176).
文摘Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote machine tool intelligence and has attracted considerable research interest.However,there is a lack of clear and systematic analyses on how the digital twin technology enables machine tool intelligence.Herein,digital twin modeling was identified as an enabling technology for machine tool intelligence based on a comparative study of the characteristics of machine tool intelligence and digital twin.The review then delves into state-of-the-art digital twin modelingenabled machine tool intelligence,examining it from the aspects of data-based modeling and mechanism-data dual-driven modeling.Additionally,it highlights three bottleneck issues facing the field.Considering these problems,the architecture of a digital twin machine tool(DTMT)is proposed,and three key technologies are expounded in detail:Data perception and fusion technology,mechanism-data-knowledge hybrid-driven digital twin modeling and virtual-real synchronization technology,and dynamic optimization and collaborative control technology for multilevel parameters.Finally,future research directions for the DTMT are discussed.This work can provide a foundation basis for the research and implementation of digital-twin modeling-enabled machine tool intelligence,making it significant for developing intelligent machine tools.
文摘A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.
文摘Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by using kinematics of the multi body system is discussed.By means of 8031 single chip system,intelligent error compensation controller has been developed.The results of experiments on XH714 machining center show that the positioning accuracy is enhanced effectively by more than 50%.
文摘With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that the frame is the main contributor.Then,influences of constraints,strut length and working ways of the main module have also been investigated.It can be concluded that when one of the main planes of the frame without linear drive unit is constrained,the largest whole stiffness can be acquired.And,the stiffness is much better when the main module is used in a vertical machine tool instead of a horizontal one.Finally,the principle of stiffness variation is summarized when the mobile platform reaches various positions within its working space and when various loads are applied.These achievements have provided critical instructions for the design of the main module for parallel machine tools.
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
文摘Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.
基金Supported by National Natural Science Foundation of China(Grant No.11290144)Innovation Foundation of BUAA for Ph D Graduates,China
文摘Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.
文摘In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.
基金Supported by Research on Reliability Assessment and Test Methods of Heavy Machine Tools,China(State Key Science&Technology Project High-grade NC Machine Tools and Basic Manufacturing Equipment,Grant No.2014ZX04014-011)Reliability Modeling of Machining Centers Considering the Cutting Loads,China(Science&Technology Development Plan for Jilin Province,Grant No.3D513S292414)Graduate Innovation Fund of Jilin University,China(Grant No.2014053)
文摘Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.
基金National Natural Science Foundation of China(No.50575084,No.50675126)Tianjin Municipal Science Technology Development Key Project,China(No.06YFGZGX00200)National Hi-tech Research Development Program of China(863 Program,No.2006AA04Z107)
文摘Adaptable design aims to extend the utilities of design and product. The specific methods are developed for practical applications of adaptable design in the design of mechanical structures, including adaptable platform, interface and module designs. Adaptable redesign problems are formulated as adaptable platform design under adaptability bound constraints. Analysis tools are then suggested for the implementation of the redesign of machine tool structures, including variation techniques based sensitivity analysis, similarity-based commonality analysis, performance improvement, and adaptability measures. The specific measure of adaptability for machine tool structures is measured through the quantification of the structural similarity and performance improvement gained from adaptable design. The method provides designers with an approach that brings adaptability into the design process, with considering the cost and benefits of such adaptability. The redesign of CNC spiral bevel gear cutting machine structures has been included to illustrate these concepts and methods.
基金Supported by Key Project of National Natural Science Fund of China(Grant No.51490660/51490661)National Natural Science Foundation of China(Grant No.51175142)
文摘Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools.
基金Project supported by National Natural Science Foundation of China(No. 50675199)the Science and Technology Project of Zhejiang Province (No. 2006C11067), China
文摘The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.
基金the National Natural Science Foundation of China(No.51405065)the National Science and Technology Major Project of China(No.2014ZX04014-011)
文摘Small sample size problem is one of the main problems that heavy numerical control(NC) machine tools encounter in their reliability assessment. In order to deal with the small sample size problem, many indirect reliability data such as reliability data of similar products, expert opinion, and engineers' experience are used in reliability assessment. However, the existing mathematical theories cannot simultaneously process the above reliability data of multiple types, and thus imprecise probability theory is introduced. Imprecise probability theory can simultaneously process multiple reliability data by quantifying multiple uncertainties(stochastic uncertainty,fuzzy uncertainty, epistemic uncertainty, etc.) together. Although imprecise probability theory has so many advantages, the existing natural extension models are complex and the computation result is imprecise. Therefore,they need some improvement for the better application of reliability engineering. This paper proposes an improved imprecise reliability assessment method by introducing empirical probability distributions to natural extension model, and the improved natural extension model is applied to the reliability assessment of heavy NC machine tool spindle to illustrate its effectiveness.