针对多部位损伤(Multiple Site Damage,MSD)结构安全性评估问题,通过Monte-Carlo方法对MSD结构的失效概率进行预测和分析。首先,基于多孔铝板的多裂纹萌生试验,得出裂纹萌生寿命服从对数正态分布,为多裂纹萌生分析提供支持;通过多孔铝...针对多部位损伤(Multiple Site Damage,MSD)结构安全性评估问题,通过Monte-Carlo方法对MSD结构的失效概率进行预测和分析。首先,基于多孔铝板的多裂纹萌生试验,得出裂纹萌生寿命服从对数正态分布,为多裂纹萌生分析提供支持;通过多孔铝板的剩余强度试验得到铆钉孔直径、铆钉孔间距和裂纹萌生位置对结构剩余强度均有一定影响。其次,通过对裂纹萌生寿命分布进行随机抽样生成初始裂纹并使用组合法结合Paris公式,实现多裂纹随机扩展的模拟;在试验数据基础上,对传统的Irwin塑性区连通准则进行改进,发现改进的Irwin塑性区连通准则在孔间距大于10mm时的误差大大降低,并结合净截面屈服准则以获得更好的剩余强度预测结果;将随机性的裂纹萌生和扩展过程与确定性的剩余强度预测方法相结合,建立基于Monte-Carlo方法的MSD结构的失效概率预测模型。最后,通过算例分析,该模型能够得到MSD结构的失效概率曲线,实现结构安全性评估。结果表明MSD结构的失效概率会在短时间内迅速增加,需要在裂纹萌生寿命附近进行限制。展开更多
随着自动驾驶技术的快速发展,如何保证自动驾驶系统的安全性变得愈发重要,因此预期功能安全(Safety of The Intended Functionality, SOTIF)的概念应运而生,它主要是为了减少由于系统非预期的感知和决策错误而引起的危害。本文提出了一...随着自动驾驶技术的快速发展,如何保证自动驾驶系统的安全性变得愈发重要,因此预期功能安全(Safety of The Intended Functionality, SOTIF)的概念应运而生,它主要是为了减少由于系统非预期的感知和决策错误而引起的危害。本文提出了一种依托自然驾驶数据的SOTIF自动化生成测试用例的方法。通过采集360°IBEO与环视摄像头数据,分析了4000多个前车切入场景,对关键变量进行参数化建模。采用改进的Monte-Carlo抽样技术,处理独立与非独立随机变量的联合分布,生成覆盖广泛场景的测试用例。实验结果表明该方法显著提升了测试用例生成效率,全面覆盖边角、危险及极端场景,解决了SOTIF测试中自动化生成测试用例的难题,为自动驾驶系统的预期功能安全评估提供了有效支持。展开更多
文摘针对多部位损伤(Multiple Site Damage,MSD)结构安全性评估问题,通过Monte-Carlo方法对MSD结构的失效概率进行预测和分析。首先,基于多孔铝板的多裂纹萌生试验,得出裂纹萌生寿命服从对数正态分布,为多裂纹萌生分析提供支持;通过多孔铝板的剩余强度试验得到铆钉孔直径、铆钉孔间距和裂纹萌生位置对结构剩余强度均有一定影响。其次,通过对裂纹萌生寿命分布进行随机抽样生成初始裂纹并使用组合法结合Paris公式,实现多裂纹随机扩展的模拟;在试验数据基础上,对传统的Irwin塑性区连通准则进行改进,发现改进的Irwin塑性区连通准则在孔间距大于10mm时的误差大大降低,并结合净截面屈服准则以获得更好的剩余强度预测结果;将随机性的裂纹萌生和扩展过程与确定性的剩余强度预测方法相结合,建立基于Monte-Carlo方法的MSD结构的失效概率预测模型。最后,通过算例分析,该模型能够得到MSD结构的失效概率曲线,实现结构安全性评估。结果表明MSD结构的失效概率会在短时间内迅速增加,需要在裂纹萌生寿命附近进行限制。
文摘随着自动驾驶技术的快速发展,如何保证自动驾驶系统的安全性变得愈发重要,因此预期功能安全(Safety of The Intended Functionality, SOTIF)的概念应运而生,它主要是为了减少由于系统非预期的感知和决策错误而引起的危害。本文提出了一种依托自然驾驶数据的SOTIF自动化生成测试用例的方法。通过采集360°IBEO与环视摄像头数据,分析了4000多个前车切入场景,对关键变量进行参数化建模。采用改进的Monte-Carlo抽样技术,处理独立与非独立随机变量的联合分布,生成覆盖广泛场景的测试用例。实验结果表明该方法显著提升了测试用例生成效率,全面覆盖边角、危险及极端场景,解决了SOTIF测试中自动化生成测试用例的难题,为自动驾驶系统的预期功能安全评估提供了有效支持。