期刊文献+
共找到5,062篇文章
< 1 2 250 >
每页显示 20 50 100
Use of continuous glucose monitoring systems in pediatric patients in the perioperative environment:Challenges and machine learning opportunities
1
作者 Tara Doherty Ashley Kelley +1 位作者 Elizabeth Kim Irim Salik 《World Journal of Clinical Pediatrics》 2025年第4期111-122,共12页
Pediatric type 1 diabetes(T1D)is a lifelong condition requiring meticulous glucose management to prevent acute and chronic complications.Conventional management of diabetic patients does not allow for continuous monit... Pediatric type 1 diabetes(T1D)is a lifelong condition requiring meticulous glucose management to prevent acute and chronic complications.Conventional management of diabetic patients does not allow for continuous monitoring of glucose trends,and can place patients at risk for hypo-and hyperglycemia.Continuous glucose monitors(CGMs)have emerged as a mainstay for pediatric diabetic care and are continuing to advance treatment by providing real-time blood glucose(BG)data,with trend analysis aided by machine learning(ML)algorithms.These predictive analytics serve to prevent against dangerous BG variations in the perioperative environment for fasted children undergoing surgical stress.Integration of CGM data into electronic health records(EHR)is essential,as it establishes a foundation for future technologic interfaces with artificial intelligence(AI).Challenges in perioperative CGM implementation include equitable device access,protection of patient privacy and data accuracy,ensuring institution of standardized protocols,and financing the cumbersome healthcare costs associated with staff training and technology platforms.This paper advocates for implementation of CGM data into the EHR utilizing multiple facets of AI/ML algorithms. 展开更多
关键词 Continuous glucose monitor Continuous glucose monitoring system Type 1 diabetes mellitus Artificial intelligence Electronic health records
暂未订购
A Novel Proactive AI-Based Agents Framework for an IoE-Based Smart Things Monitoring System with Applications for Smart Vehicles
2
作者 Meng-Hua Yen Nilamadhab Mishra +1 位作者 Win-Jet Luo Chu-En Lin 《Computers, Materials & Continua》 2025年第2期1839-1855,共17页
The Internet of Everything(IoE)coupled with Proactive Artificial Intelligence(AI)-Based Learning Agents(PLAs)through a cloud processing system is an idea that connects all computing resources to the Internet,making it... The Internet of Everything(IoE)coupled with Proactive Artificial Intelligence(AI)-Based Learning Agents(PLAs)through a cloud processing system is an idea that connects all computing resources to the Internet,making it possible for these devices to communicate with one another.Technologies featured in the IoE include embedding,networking,and sensing devices.To achieve the intended results of the IoE and ease life for everyone involved,sensing devices and monitoring systems are linked together.The IoE is used in several contexts,including intelligent cars’protection,navigation,security,and fuel efficiency.The Smart Things Monitoring System(STMS)framework,which has been proposed for early occurrence identification and theft prevention,is discussed in this article.The STMS uses technologies based on the IoE and PLAs to continuously and remotely observe,control,and monitor vehicles.The STMS is familiar with the platform used by the global positioning system;as a result,the STMS can maintain a real-time record of current vehicle positions.This information is utilized to locate the vehicle in an accident or theft.The findings of the STMS system are promising for precisely identifying crashes,evaluating incident severity,and locating vehicles after collisions have occurred.Moreover,we formulate an ad hoc STMS network communication scenario to evaluate the efficacy of data communication by utilizing various network parameters,such as round-trip time(RTT),data packet transmission,data packet reception,and loss.From our experimentation,we obtained an improved communication efficiency for STMS across multiple PLAs compared to the standard greedy routing and traditional AODV approaches.Our framework facilitates adaptable solutions with communication competence by deploying Proactive PLAs in a cloud-connected smart vehicular environment. 展开更多
关键词 Artificial intelligence(AI) proactive AI-based learning agents(PLA) internet of everything(IoE) smart things monitoring system(STMS) cloud processing system driving monitoring assistance system(MAS) smart vehicles
在线阅读 下载PDF
Intelligent field monitoring system for cruciferous vegetable pests using yellow sticky board images and an improved Cascade R-CNN
3
作者 Yufan Gao Fei Yin +5 位作者 Chen Hong Xiangfu Chen Hang Deng Yongjian Liu Zhenyu Li Qing Yao 《Journal of Integrative Agriculture》 2025年第1期220-234,共15页
Cruciferous vegetables are important edible vegetable crops.However,they are susceptible to various pests during their growth process,which requires real-time and accurate monitoring of these pests for pest forecastin... Cruciferous vegetables are important edible vegetable crops.However,they are susceptible to various pests during their growth process,which requires real-time and accurate monitoring of these pests for pest forecasting and scientific control.Hanging yellow sticky boards is a common way to monitor and trap those pests which are attracted to the yellow color.To achieve real-time,low-cost,intelligent monitoring of these vegetable pests on the boards,we established an intelligent monitoring system consisting of a smart camera,a web platform and a pest detection algorithm deployed on a server.After the operator sets the monitoring preset points and shooting time of the camera on the system platform,the camera in the field can automatically collect images of multiple yellow sticky boards at fixed places and times every day.The pests trapped on the yellow sticky boards in vegetable fields,Plutella xylostella,Phyllotreta striolata and flies,are very small and susceptible to deterioration and breakage,which increases the difficulty of model detection.To solve the problem of poor recognition due to the small size and breaking of the pest bodies,we propose an intelligent pest detection algorithm based on an improved Cascade R-CNN model for three important cruciferous crop pests.The algorithm uses an overlapping sliding window method,an improved Res2Net network as the backbone network,and a recursive feature pyramid network as the neck network.The results of field tests show that the algorithm achieves good detection results for the three target pests on the yellow sticky board images,with precision levels of 96.5,92.2 and 75.0%,and recall levels of 96.6,93.1 and 74.7%,respectively,and an F_(1) value of 0.880.Compared with other algorithms,our algorithm has a significant advantage in its ability to detect small target pests.To accurately obtain the data for the newly added pests each day,a two-stage pest matching algorithm was proposed.The algorithm performed well and achieved results that were highly consistent with manual counting,with a mean error of only 2.2%.This intelligent monitoring system realizes precision,good visualization,and intelligent vegetable pest monitoring,which is of great significance as it provides an effective pest prevention and control option for farmers. 展开更多
关键词 vegetable pests yellow sticky boards intelligent monitoring system deep learning pest detection
在线阅读 下载PDF
A monitoring system to improve fault diagnosis in telescope arrays
4
作者 Yang Xu Guangwei Li +6 位作者 Jing Wang Liping Xin Hongbo Cai Xuhui Han Xiaomeng Lu Lei Huang Jianyan Wei 《Astronomical Techniques and Instruments》 2025年第4期246-254,共9页
The Ground-based Wide-Angle Cameras array necessitates the integration of more than 100 hardware devices,100 servers,and 2500 software modules that must be synchronized within a 3-second imaging cycle.However,the comp... The Ground-based Wide-Angle Cameras array necessitates the integration of more than 100 hardware devices,100 servers,and 2500 software modules that must be synchronized within a 3-second imaging cycle.However,the complexity of real-time,high-concurrency processing of large datasets has historically resulted in substantial failure rates,with an observation efficiency estimated at less than 50%in 2023.To mitigate these challenges,we developed a monitoring system designed to improve fault diagnosis efficiency.It includes two innovative monitoring views for“state evolution”and“transient lifecycle”.Combining these with“instantaneous state”and“key parameter”monitoring views,the system represents a comprehensive monitoring strategy.Here we detail the system architecture,data collection methods,and design philosophy of the monitoring views.During one year of fault diagnosis experimental practice,the proposed system demonstrated its ability to identify and localize faults within minutes,achieving fault localization nearly ten times faster than traditional methods.Additionally,the system design exhibited high generalizability,with possible applicability to other telescope array systems. 展开更多
关键词 Automated telescopes Astronomical image processing Fault diagnosis monitoring system
在线阅读 下载PDF
Application of a multi-monitoring system and its temperature correction
5
作者 LIU Songyuan YANG Peixi +1 位作者 HE ManChao TAO Zhigang 《Journal of Mountain Science》 2025年第2期681-694,共14页
The Dazu Rock Carvings in Chongqing were inscribed on the World Heritage List in 1999.In recent years,the Dazu Rock Carvings have faced environmental challenges such as geological forces,increased precipitation,pollut... The Dazu Rock Carvings in Chongqing were inscribed on the World Heritage List in 1999.In recent years,the Dazu Rock Carvings have faced environmental challenges such as geological forces,increased precipitation,pollution and tourism,which have led to rock deterioration and structural instability.The multi-source monitoring system for the protection of the rock carvings,based on the Internet of Things,includes Global Navigation Satellite System(GNSS)displacement monitoring,static level displacement monitoring,laser rangefinder displacement monitoring,roof pressure sensor monitoring and environmental damage monitoring.This paper analyses data from each sub-monitoring system within the multi-source monitoring system applied to Yuanjue Cave in the Dazu Rock Carvings.Initially,a correlation analysis between climate monitoring data and roof displacement data was carried out to assess the effect of temperature.Based on the results of the analysis,a temperature correction equation for the laser rangefinder was derived to improve the laser rangefinder displacement monitoring system.The improved system was then used to monitor Cave 168,revealing the deformation and erosion patterns of the roof.The research results demonstrate that the multiparameter monitoring system is capable of accurately measuring and analyzing the stability of the Dazu stone carvings,as well as the effects of environmental conditions on them.The use of the Internet of Things(IoT)and real-time data collection to monitor rock deformation and environmental conditions is an innovative application of technology in cultural heritage conservation.Interpretation of the monitoring system and statistical correlation analysis of temperature and laser rangefinder data highlight the thoroughness of the methodology in this paper and its relevance to sustainable mountain development.In the future,multi-source monitoring systems will have a broader application in the conservation of other UNESCO World Heritage Sites. 展开更多
关键词 Multi-source monitoring system Data Fitting Dazu Rock Carvings Rock Cave Protection
原文传递
The Design and Implementation of a Biomechanics-Driven Structural Safety Monitoring System for Offshore Wind Power Step-Up Stations
6
作者 Ruigang Zhang Qihui Yan +3 位作者 Jialiang Wang Hao Wang Jie Sun Junjiao Shi 《Energy Engineering》 2025年第9期3609-3624,共16页
As the core facility of offshore wind power systems,the structural safety of offshore booster stations directly impacts the stable operation of entire wind farms.With the global energy transition toward green and lowc... As the core facility of offshore wind power systems,the structural safety of offshore booster stations directly impacts the stable operation of entire wind farms.With the global energy transition toward green and lowcarbon goals,offshore wind power has emerged as a key renewable energy source,yet its booster stations face harsh marine environments,including persistent wave impacts,salt spray corrosion,and equipment-induced vibrations.Traditional monitoring methods relying on manual inspections and single-dimensional sensors suffer from critical limitations:low efficiency,poor real-time performance,and inability to capture millinewton-level stress fluctuations that signal early structural fatigue.To address these challenges,this study proposes a biomechanics-driven structural safety monitoring system integrated with deep learning.Inspired by biological stress-sensing mechanisms,the system deploys a distributedmulti-dimensional force sensor network to capture real-time stress distributions in key structural components.A hybrid convolutional neural network-radial basis function(CNN-RBF)model is developed:the CNN branch extracts spatiotemporal features from multi-source sensing data,while the RBF branch reconstructs the nonlinear stress field for accurate anomaly diagnosis.The three-tier architectural design—data layer(distributed sensor array),function layer(CNN-RBF modeling),and application layer(edge computing terminal)—enables a closedloop process from high-resolution data collection to real-time early warning,with data processing delay controlled within 200 ms.Experimental validation against traditional SOM-based systems demonstrates significant performance improvements:monitoring accuracy increased by 19.8%,efficiency by 23.4%,recall rate by 20.5%,and F1 score by 21.6%.Under extreme weather(e.g.,typhoons and winter storms),the system’s stability is 40% higher,with user satisfaction improving by 17.2%.The biomechanics-inspired sensor design enhances survival rates in salt fog(85.7%improvement)and dynamic loads,highlighting its robust engineering applicability for intelligent offshore wind farm maintenance. 展开更多
关键词 BIOMECHANICS offshore wind power step-up station safety monitoring system
在线阅读 下载PDF
Study on Affecting Factors of the Consistency of Printed Electrodes Based on an Online Pressure Monitoring System
7
作者 CAI Zi-mu GU Jin-tao +2 位作者 CHENG Guang-kai XU Guang-yi LI Yan 《印刷与数字媒体技术研究》 北大核心 2025年第2期91-97,共7页
In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this stu... In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance. 展开更多
关键词 Printing pressure Consistency of printed electrodes Screen printing Online monitoring
在线阅读 下载PDF
Operational modal identification of suspension bridge based on structural health monitoring system 被引量:7
8
作者 李枝军 李爱群 韩晓林 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期104-107,共4页
An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The method... An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements. 展开更多
关键词 suspension bridge operational modal identification structural health monitoring system ambient vibration test
在线阅读 下载PDF
Designing and optimizing an intelligent self-powered condition monitoring system for mining belt conveyor idlers and its application
9
作者 Xuanbo JIAO Zhixia WANG +2 位作者 Wei WANG F.S.GU S.HEYNS 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1679-1698,共20页
Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reas... Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reasonable manual inspection capacity.Given that idlers typically have a lifespan of 1-2 years,there is an urgent need for a rapid,cost-effective,and intelligent safety monitoring system.However,current embedded systems face prohibitive replacement costs,while conventional monitoring technologies suffer from inefficiency at low rotational speeds and lack systematic structural optimization frameworks for diverse idler types and parameters.To address these challenges,this paper introduces an integrated,on-site detachable self-powered idler condition monitoring system(ICMS).This system combines energy harvesting based on the magnetic modulation technology with wireless condition monitoring capabilities.Specifically,it develops a data-driven model integrating convolutional neural networks(CNNs) with genetic algorithms(GAs).The conventional testing results show that the data-driven model not only significantly accelerates the parameter response time,but also achieves a prediction accuracy of 92.95%.The in-situ experiments conducted in coal mines demonstrate the system's reliability and monitoring functionality under both no-load and fullload conditions.This research provides an innovative self-powered condition monitoring solution and develops an efficient data-driven model,offering feasible online monitoring approaches for smart mine construction. 展开更多
关键词 intelligent safety monitoring SELF-POWERED magnetic modulation data driven model mining conveyor
在线阅读 下载PDF
Design and research on seismic intensity monitoring system for railway based on Kriging interpolation method
10
作者 Xueying Zhou Xin Bai +4 位作者 Wentao Sun Zehui Zhang Youbiao Wang Cheng Wang Yan Xuan 《Railway Sciences》 2025年第6期729-745,共17页
Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribut... Purpose–This research aims to monitor seismic intensity along railway lines,study methods for calculating the extent of earthquake impact on railways and address practical challenges in estimating intensity distribution along railway routes,thereby achieving graded post-earthquake response measures.Design/methodology/approach–The seismic intensity monitoring system for railways adopts a two-level architecture,namely the seismic intensity monitoring equipment and the seismic intensity rapid reporting information center processing platform.The platform obtains measured instrumental intensity through the seismic intensity monitoring equipment deployed along railways and combines it with the National Seismic Network Earthquake Catalog to generate real-time railway seismic intensity distribution maps using the Kriging interpolation algorithm.A calculation method for railway seismic impact intervals is designed to calculate the mileage intervals where the intensity area corresponding to each contour line in the seismic intensity distribution map intersects with the railway line.Findings–The system was deployed for practical earthquake monitoring demonstration applications on the Nanjiang Railway Line in Xinjiang.During the operational period,the seismic intensity monitoring equipment calculated and uploaded instrumental intensity values to the seismic intensity rapid reporting information center processing platform a total of nine times.Among these,earthquakes triggering the Kriging interpolation algorithm occurred twice.The system operated stably throughout the application period and successfully visualized relevant seismic impact data,such as earthquake intensity distribution maps and affected railway mileage sections.These results validate the system’s practicality and effectiveness.Originality/value–The seismic intensity monitoring for the railway system designed in this study can integrate the measured instrumental intensity data along railways and the earthquake catalog of the National Seismic Network.It uses the Kriging interpolation method to calculate the intensity distribution and determine the seismic impact scope,thereby addressing the issue that the seismic intensity distribution calculated by traditional attenuation formulas deviates from reality.The system can provide clear graded interval recommendations for post-earthquake disposal,effectively improve the efficiency of post-earthquake recovery and inspection and offer a decision-making basis for restoring railway operations quickly. 展开更多
关键词 Seismic intensity monitoring RAILWAY Kriging interpolation Impact scope
在线阅读 下载PDF
Wireless Photovoltaic Fault Monitoring System
11
作者 Wenbo Xiao Huangfeng Dong +2 位作者 Huaming Wu Yongbo Li Bin Liu 《Instrumentation》 2025年第2期23-35,共13页
This study presents a wireless photovoltaic fault monitoring system integrating an STM32 microcontroller with an Improved Horned Lizard Optimization Algorithm(IHLOA)and a Multi-Layer Perceptron(MLP)neural network.The ... This study presents a wireless photovoltaic fault monitoring system integrating an STM32 microcontroller with an Improved Horned Lizard Optimization Algorithm(IHLOA)and a Multi-Layer Perceptron(MLP)neural network.The IHLOA algorithm introduces three key innovations:(1)chaotic initialization to enhance population diversity and global search capability,(2)adaptive random walk strategies to escape local optima,and(3)a cross-strategy mechanism to accelerate convergence and enhance fault detection accuracy and robustness.The system comprises both hardware and software components.The hardware includes sensors such as the BH1750 light intensity sensor,DS18B20 temperature sensor,and INA226 current and voltage sensor,all interfaced with the STM32F103C8T6 microcontroller and the ESP8266 module for wireless data transmission.The software,developed using QT Creator,incorporates an IHLOA-MLP model for fault diagnosis.The user-friendly interface facilitates intuitive monitoring and scalability for multiple systems.Experimental validation on a PV array demonstrates that the IHLOA-MLP model achieves a fault detection accuracy of 94.55%,which is 2.4%higher than the standard MLP,while reducing variance by 63.64%compared to the standard MLP.This highlights its accuracy and robustness.When compared to other optimization algorithms such as BKA-MLP(94.10%accuracy)and HLOA-MLP(94.00%accuracy),the IHLOA-MLP further reduces variance to 0.08,showcasing its superior performance.The system selects voltage as a feature vector to maintain circuit stability,avoiding efficiency impacts from series current sensors.This combined hardware and software approach further reduces false alarms to 0.1%through a consecutive-judgment mechanism,significantly enhancing practical reliability.This work provides a cost-effective and scalable solution for improving the stability and safety of PV systems in real-world applications. 展开更多
关键词 STM32 horned lizard optimization algorithm multilayer perceptron fault diagnosis photovoltaic monitoring
原文传递
Wearable Multifunctional Health Monitoring Systems Enabled by Ultrafast Flash-Induced 3D Porous Graphene
12
作者 Se Jin Choi Chan Hyeok Kim +13 位作者 Jeong Hyeon Kim Kang Hyeon Kim Sang Yoon Park Yu Jin Ko Hosung Kang Young Bin Kim Yu Mi Woo Jae Young Seok Bongchul Kang Chang Kyu Jeong Kwi-Il Park Geon-Tae Hwang Jung Hwan Park Han Eol Lee 《Energy & Environmental Materials》 2025年第4期259-269,共11页
A wearable health monitoring system is a promising device for opening the era of the fourth industrial revolution due to increasing interest in health among modern people.Wearable health monitoring systems were demons... A wearable health monitoring system is a promising device for opening the era of the fourth industrial revolution due to increasing interest in health among modern people.Wearable health monitoring systems were demonstrated by several researchers,but still have critical issues of low performance,inefficient and complex fabrication processes.Here,we present the world’s first wearable multifunctional health monitoring system based on flash-induced porous graphene(FPG).FPG was efficiently synthesized via flash lamp,resulting in a large area in four milliseconds.Moreover,to demonstrate the sensing performance of FPG,a wearable multifunctional health monitoring system was fabricated onto a single substrate.A carbon nanotube-polydimethylsiloxane(CNT-PDMS)nanocomposite electrode was successfully formed on the uneven FPG surface using screen printing.The performance of the FPG-based wearable multifunctional health monitoring system was enhanced by the large surface area of the 3D-porous structure FPG.Finally,the FPG-based wearable multifunctional health monitoring system effectively detected motion,skin temperature,and sweat with a strain GF of 2564.38,a linear thermal response of 0.98Ω℃^(-1) under the skin temperature range,and a low ion detection limit of 10μM. 展开更多
关键词 flash-induced porous graphene nanocomposite-based electrode real-time biosignal monitoring screen printing wearable multifunctional sensor
在线阅读 下载PDF
High-precision laser monitoring system with enhanced non-uniform scanning for railway safety
13
作者 Yingying Yang Cheng Wang +6 位作者 Xiaoqi Liu Yu Liu Weier Lu Zhonglin Zhu Hongye Yan Guotang Zhao Xuechun Lin 《Railway Engineering Science》 2025年第1期79-93,共15页
The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railw... The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railway security is paramount.The current laser monitoring technologies suffer from high false alarm rates and unreliable intrusion identification.This study addresses these issues by investigating high-resolution laser monitoring technology for railway obstacles,focusing on key parameters such as monitoring range and resolution.We propose an enhanced non-uniform laser scanning method,developing a laser monitoring system that reduces the obstacle false alarm rate to 2.00%,significantly lower than the 20%standard(TJ/GW135-2015).This rate is the best record for laser monitoring systems on China Railway.Our system operates seamlessly in all weather conditions,providing superior accuracy,resolution,and identification efficiency.It is the only 3D LiDAR system certified by the China State Railway Group Co.,Ltd.(Certificate No.[2023]008).Over three years,our system has been deployed at numerous points along various lines managed by the China State Railway Group,accumulating a dataset of 300,000 observations.This extensive deployment has significantly enhanced railway safety.The development and implementation of our railway laser monitoring system represent a substantial advancement in railway safety technology.Its low false alarm rate(2.00%),high accuracy(20 cm×20 cm×20 cm),and robust performance in diverse conditions underscore its potential for widespread adoption,promising to enhance railway safety in China and internationally. 展开更多
关键词 Laser monitoring technology Non-uniform laser scanning method False alarm rate Railway safety
在线阅读 下载PDF
From Geometric Precision to Performance:Improved Online Monitoring System for Thin-Walled Parts by Fine Wire Laser Directed Energy Deposition
14
作者 Yi Li Zhenzhong Wang +2 位作者 Chaofan Liu Feng Chen Guo Bi 《Additive Manufacturing Frontiers》 2025年第3期193-208,共16页
Difficulties in the geometric and performance control of wire laser additive manufacturing have hindered its widespread application.In this study,an in situ process monitoring system that combines a machine vision-bas... Difficulties in the geometric and performance control of wire laser additive manufacturing have hindered its widespread application.In this study,an in situ process monitoring system that combines a machine vision-based interlayer height controller(IHC)and P-controller-based melt pool temperature controller(MTC)was developed to improve the vertical dimensional accuracy and mechanical properties of off-axis fine-wire laser-directed energy deposition(OAFW-LDED)for 316 L thin-walled parts.The IHC effectively mitigates external defect inheritance,while its synergy with the MTC ensures process stability,improving the vertical dimensional accuracy to±0.2 mm.Grain refinement was achieved by controlling the thermal input to optimize the thermal history and heat accumulation.A heterogeneous microstructure with alternating coarse and fine grains was observed and intergranular thermal cracking was suppressed.The yield and tensile strengths increased from 262 to 416 MPa to 313 and 516 MPa,respectively,with improved consistency in the yield strength between the top and bottom sections.However,excessive laser heat input caused interlayer cracks.Conversely,increasing the heat input through substrate preheating did not induce additional cracks and improved the overall hardness consistency of the thin-walled samples.Therefore,this study proposes a new formability control strategy for OAFW-LDEDs of thin-walled parts. 展开更多
关键词 Wire-laser directed energy deposition In-situ process monitoring Thermal accumulation Dimensional accuracy Microstructure and mechanical properties
在线阅读 下载PDF
Application and Development of Protected Horticulture Intelligent Monitoring System
15
作者 徐磊 郑洪倩 +1 位作者 虞利俊 唐玉邦 《Agricultural Science & Technology》 CAS 2014年第3期512-514,F0003,共4页
Protected horticulture makes use of related facilities, engineering technolo- gy and management technologies to create or improve local environment in order to provide optimal environment concerning controllable tempe... Protected horticulture makes use of related facilities, engineering technolo- gy and management technologies to create or improve local environment in order to provide optimal environment concerning controllable temperature, humidity, and light for farming and breeding industry, as well as product storage. Protected horticulture is independent to some extent, instead of relying greatly on nature, targeting full use of soil, climate and biological potential. The research concluded production characteristics of protected horticulture and analyzed the application of protected hor- ticulture intelligent monitoring system in protected greenhouse cultivation. In addition, the future development was proposed on protected horticulture intelligent monitoring system. 展开更多
关键词 Protected horticulture Intelligent monitoring system Prospect and development
在线阅读 下载PDF
An IoT-Based Aquaculture Monitoring System Using Firebase
16
作者 Wen-Tsai Sung Indra Griha Tofik Isa Sung-Jung Hsiao 《Computers, Materials & Continua》 SCIE EI 2023年第8期2179-2200,共22页
Indonesia is a producer in the fisheries sector,with production reaching 14.8 million tons in 2022.The production potential of the fisheries sector can be optimally optimized through aquaculture management.One of the ... Indonesia is a producer in the fisheries sector,with production reaching 14.8 million tons in 2022.The production potential of the fisheries sector can be optimally optimized through aquaculture management.One of the most important issues in aquaculture management is how to efficiently control the fish pond water conditions.IoT technology can be applied to support a fish pond aquaculture monitoring system,especially for catfish species(Siluriformes),in real-time and remotely.One of the technologies that can provide this convenience is the IoT.The problem of this study is how to integrate IoT devices with Firebase’s cloud data system to provide reliable and precise data,which makes it easy for fish cultivators to monitor fishpond conditions in real time and remotely.The IoT aquaculture fishpond monitoring use 3 parameters:(1)water temperature;(2)pHwater level;and(3)turbidity level of pond water.IoT devices use temperature sensors,pH sensors,and turbidity sensors,which are integrated with a microcontroller and Wi-Fi module.Data from sensor readings are sent to the Firebase cloud via theWi-Fi module so that it can be accessed in real time by end users with an Androidbased mobile app.The findings are(1)the IoT-based aquaculture monitoring system device has a low error rate in measuring temprature,pH,and turbidity with a percentage of 1.75%,1.94% and 9.78%,respectively.Overall,the total average error of the three components is 4.49%;(2)in cost analysis,IoT-based has a cost-effectiveness of 94.21% compared to labor costs.An IoT-based aquaculture monitoring system using Firebase can be effectively used as a technology for monitoring fish pond conditions in real-time and remotely for fish cultivators that contribute to providing an IoT-based aquaculture monitoring system that produces valid data,is precise,is easy to implement,and is a low-cost system. 展开更多
关键词 Internet of Things aquaculture technology water monitoring system real-time database aquaculture monitoring system
在线阅读 下载PDF
Hyperspectral Intelligent Monitoring System of Major Soil Nutrients Based on ArcGIS Engine 被引量:1
17
作者 周聪亮 陈红艳 +1 位作者 周雪 陈敬春 《Agricultural Science & Technology》 CAS 2014年第7期1205-1208,共4页
Based on the object-oriented concept,the hyperspectral intelligent monitoring system of major soil nutrients was designed and developed by using C# and ArcGIS Engine in combination with Microsoft SQL Server.The system... Based on the object-oriented concept,the hyperspectral intelligent monitoring system of major soil nutrients was designed and developed by using C# and ArcGIS Engine in combination with Microsoft SQL Server.The system mainly includes the following functions:file operation,basic map operation,spectral preprocessing,model management,nutrient content quick calculation,spatial distribution analysis,user management and so on.This system can accomplish the input and preprocessing of soil hyperspectra,and calculate the content of major nutrients,such as soil organic matter,nitrogen,phosphorus as well as potassium quickly and intelligently based on hyperspectral data.Thereby,the soil nutrients regional distribution in the research area can be analyzed by using the principle of geostatistics.This study can not only promote the practicability of soil quantitative remote sensing,but also provide references for the decision-making of agricultural fertilizing. 展开更多
关键词 Hyperspectra ArcGIS Engine Intelligent monitoring system Agricultural fertilizing decision-making
在线阅读 下载PDF
Development of an automatic monitoring system for rice light-trap pests based on machine vision 被引量:17
18
作者 YAO Qing FENG Jin +9 位作者 TANG Jian XU Wei-gen ZHU Xu-hua YANG Bao-jun LU Jun XIE Yi-ze YAO Bo WU Shu-zhen KUAI Nai-yang WANG Li-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第10期2500-2513,共14页
Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still inv... Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system. 展开更多
关键词 automatic monitoring system light trap rice pest machine vision image processing convolutional neural network
在线阅读 下载PDF
Real-time moving object detection for video monitoring systems 被引量:18
19
作者 Wei Zhiqiang Ji Xiaopeng Wang Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期731-736,共6页
Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew back... Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems. 展开更多
关键词 video monitoring system moving object detection background subtraction background model shadow elimination.
在线阅读 下载PDF
Analyses of Trawling Track and Fishing Activity Based on the Data of Vessel Monitoring System(VMS): A Case Study of the Single Otter Trawl Vessels in the Zhoushan Fishing Ground 被引量:12
20
作者 WANG Yang WANG Yingbin ZHENG Ji 《Journal of Ocean University of China》 SCIE CAS 2015年第1期89-96,共8页
The original purpose of Vessel Monitoring System(VMS) is for enforcement and control of vessel sailing. With the application of VMS in fishing vessels, more and more population dynamic studies have used VMS data to im... The original purpose of Vessel Monitoring System(VMS) is for enforcement and control of vessel sailing. With the application of VMS in fishing vessels, more and more population dynamic studies have used VMS data to improve the accuracy of fisheries stock assessment. In this paper, we simulated the trawl trajectory under different time intervals using the cubic Hermite spline(c Hs) interpolation method based on the VMS data of 8 single otter trawl vessels(totally 36000 data items) fishing in Zhoushan fishing ground from September 2012 to December 2012, and selected the appropriate time interval. We then determined vessels' activities(fishing or non-fishing) by comparing VMS speed data with the corresponding speeds from logbooks. The results showed that the error of simulated trajectory greatly increased with the increase of time intervals of VMS data when they were longer than 30 minutes. Comparing the speeds from VMS with those from the corresponding logbooks, we found that the vessels' speeds were between 2.5 kn and 5.0 kn in fishing. The c Hs interpolation method is a new choice for improving the accuracy of estimation of sailing trajectory, and the VMS can be used to determine the vessels' activities with the analysis of their trajectories and speeds. Therefore, when the fishery information is limited, VMS can be one of the important data sources for fisheries stock assessment, and more attention should be paid to its construction and application to fisheries stock assessment and management. 展开更多
关键词 single otter trawls Zhoushan fishing ground Vessel monitoring system (VMS) trajectory fishing activity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部