Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely orien...Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely oriented.Using NbOCl_(2) monolayer with competing ferroelectric(FE)and antiferroelectric(AFE)phases as a 2D material platform,we demonstrate the emergence of intrinsic antiferroelectricity in NbOCl_(2) monolayer under experimentally accessible shear strain,along with new functionality associated with electric field-induced AFE-to-FE phase transition.Specifically,the complex configuration space accommodating FE and AFE phases,polarization switching kinetics,and finite temperature thermodynamic properties of 2D NbOCl_(2) are all accurately predicted by large-scale molecular dynamics simulations based on deep learning interatomic potential model.Moreover,room temperature stable antiferroelectricity with low polarization switching barrier and one-dimensional collinear polarization arrangement is predicted in shear-deformed NbOCl_(2) monolayer.The transition from AFE to FE phase in 2D NbOCl_(2) can be triggered by a low critical electric field,leading to a double polarization–electric(P–E)loop with small hysteresis.A new type of optoelectronic device composed of AFE-NbOCl_(2) is proposed,enabling electric“writing”and nonlinear optical“reading”logical operation with fast operation speed and low power consumption.展开更多
Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor ...Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor agents a research hotspot.In this study,artificial intelligence(AI)technology and molecular simulation strategies were fully integrated to construct an efficient and precise drug screening pipeline,which combined Voting strategy based on compound-protein interaction(CPI)prediction models,cascade molecular docking,and molecular dynamic(MD)simulations.The biological potential of the screened compounds was further evaluated through enzymatic and cellular activity assays.Among the identified compounds,Cmpd.18 exhibited more potent HDAC6 enzyme inhibitory activity(IC_(50)=5.41 nM)than that of tubastatin A(TubA)(IC_(50)=15.11 nM),along with a favorable subtype selectivity profile(selectivity index z 117.23 for HDAC1),which was further verified by the Western blot analysis.Additionally,Cmpd.18 induced G2/M phase arrest and promoted apoptosis in HCT-116 cells,exerting desirable antiproliferative activity(IC_(50)=2.59 mM).Furthermore,based on long-term MD simulation trajectory,the key residues facilitating Cmpd.18's binding were identified by decomposition free energy analysis,thereby elucidating its binding mechanism.Moreover,the representative conformation analysis also indicated that Cmpd.18 could stably bind to the active pocket in an effective conformation,thus demonstrating the potential for in-depth research of the 2-(2-phenoxyethyl)pyridazin-3(2H)-one scaffold.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)mole...Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)molecular dynamics(MD)simulation offers a microscopic angle to view the self-assembly of BCPs.Although some molecular details are sacrificed during CG processes,this method exhibits remarkable computational efficiency.In this study,a comprehensive CG model for polystyrene-block-poly(2-vinylpyridine),PS-b-P2VP,one of the most extensively studied BCPs for its high Flory-Huggins interaction parameter,is constructed,with parameters optimized using target values derived from all-atom MD simulations.The CG model precisely coincides with various classical self-assembling morphologies observed in experimental studies,matching the theoretical phase diagrams.Moreover,the conformational asymmetry of the experimental phase diagram is also clearly revealed by our simulation results,and the phase boundaries obtained from simulations are highly consistent with experimental results.The CG model is expected to extend to simulate the self-assembly behaviors of other BCPs in addition to PS-b-P2VP,thus increasing understanding of the microphase separation of BCPs from the molecular level.展开更多
Shale gas in southern China is found to contain economically valuable helium(He),which is inconsistent with conventional perspective that hydrocarbon gases in shale would dilute He to sub-economic levels.The adsorptio...Shale gas in southern China is found to contain economically valuable helium(He),which is inconsistent with conventional perspective that hydrocarbon gases in shale would dilute He to sub-economic levels.The adsorption of gases in the nanopores of organic matter is considered a crucial factor influencing the shale gas composition.The adsorption behaviors of He,methane(CH_(4))and their mixtures in kerogen nanopores were performed by the Grand Canonical Monte Carlo simulation.The molecular simulations of pure He reveal that He can be adsorbed in shale and the adsorption capacity of He increases with the burial depth of shale.Before the hydrocarbon generation from kerogen,He has been continually generated in shale,the simulations further demonstrate that pure He can be partially preserved in shale as adsorbed gas phase.The simulations of competitive adsorption between CH_(4) and He show that the adsorption selectivity of CH_(4)/He is consistently higher than 1.0 under the simulated conditions.This indicates that the previously adsorbed He will be displaced by CH_(4) and subsequently concentrated in hydrocarbon gas as free gas phase during the process of hydrocarbon gas generation from kerogen.After the termination of hydrocarbon gas generation,He continues to be generated in shale and preferentially concentrated in free shale gas.Therefore,the concentration of He in shale gas will gradually increase with the generation time of He.In addition,our simulations indicate that high pressure and deep burial depth can enhance the adsorption of He in kerogen,suggesting that deeply buried organic-rich shale probably retains more adsorbed helium.Molecular simulations of He adsorption provide new insights into the accumulation process of He in shale gas and are of great significance for assessing helium resource potential in shale gas.展开更多
Shale gas serves as a significant strategic successor resource for future oil and gas reserves and production in China.Thus,a profound understanding of the adsorption mechanism of shale gas in shale reservoirs is cruc...Shale gas serves as a significant strategic successor resource for future oil and gas reserves and production in China.Thus,a profound understanding of the adsorption mechanism of shale gas in shale reservoirs is crucial to accurately predict and evaluate shale gas reserves.In this study,we utilized two simulation methods,molecular dynamics simulation and Giant Canonical Monte Carlo simulation to examine the adsorption characteristics of kerogen under varying temperature and pressure conditions.We compared the results under identical temperature and pressure conditions for different mineral-kerogen composite models.Moreover,we examined the effects of temperature,pressure,and mineral species on the kerogen adsorption mechanism.The results indicate that shale formations with high organic matter content and a substantial proportion of non-clay inorganic minerals,as well as those subjected to higher temperature and pressure conditions than the shallow layer,possess a greater capacity to accommodate shale gas.This study examined the adsorption mechanism of methane in shale gas using different mineral-kerogen composite models.The findings of this study provide more accurate guidance and support for efficient development of shale gas.展开更多
Direct viscosification of CO_(2) offers promising alternative for mobility control and reduction in residual brine saturation,thus to improve the CO_(2) trapping in saline aquifers.Hydrocarbon oligomers,recognized for...Direct viscosification of CO_(2) offers promising alternative for mobility control and reduction in residual brine saturation,thus to improve the CO_(2) trapping in saline aquifers.Hydrocarbon oligomers,recognized for their exceptional properties,are considered as one of the most promising viscosifiers in displacement of brine-saturated porous media.However,the molecular-level mechanisms governing the solubility and viscosification of hydrocarbon oligomers in scCO_(2) remain poorly understood.In this study,we employ coarse-grained molecular models to advance our understanding in the effects of molecular structure of hydrocarbon oligomers on their solubility in scCO_(2).The coarse-grained models of five hydrocarbon oligomers with different numbers of methyl-branch(n-C32,P1D-2,P1D-3,P1D-6 and squalane)are established to investigate their effects on solubilization in scCO_(2).We demonstrate that the number of methyl groups has a monotonic correlation with the solubility of hydrocarbon oligomers when the molecular weights of oligomers are comparable.The radial distribution function reveals nC32,P1D and squalane are uniformly dispersed with separation distances of approximately 1.0–2.0 nm.The interaction energy between hydrocarbon oligomers and CO_(2) shows that the number of methylbranch in hydrocarbon oligomers can directly influence their solubility in scCO_(2).Molecular simulation results demonstrate that the interaction distances between the methyl-branch and CO_(2) are smaller than those of other molecular fragments.There are approximately 20%more CO_(2) molecules interacting with methyl-branch than with other parts.This work sets the stage for our future molecular dynamics study in viscosification by hydrocarbon oligomers with different branching length and interfacial phenomena in multiphase systems.展开更多
Electrolyte engineering with fluoroethers as solvents offers promising potential for high-performance lithium metal batteries.Despite recent progresses achieved in designing and synthesizing novel fluoroether solvents...Electrolyte engineering with fluoroethers as solvents offers promising potential for high-performance lithium metal batteries.Despite recent progresses achieved in designing and synthesizing novel fluoroether solvents,a systematic understanding of how fluorination patterns impact electrolyte performance is still lacking.We investigate the effects of fluorination patterns on properties of electrolytes using fluorinated 1,2-diethoxyethane(FDEE)as single solvents.By employing quantum calculations,molecular dynamics simulations,and interpretable machine learning,we establish significant correlations between fluorination patterns and electrolyte properties.Higher fluorination levels enhance FDEE stability but decrease conductivity.The symmetry of fluorination sites is critical for stability and viscosity,while exerting minimal influence on ionic conductivity.FDEEs with highly symmetric fluorination sites exhibit favorable viscosity,stability,and overall electrolyte performance.Conductivity primarily depends on lithium-anion dissociation or association.These findings provide design principles for rational fluoroether electrolyte design,emphasizing the trade-offs between stability,viscosity,and conductivity.Our work underscores the significance of considering fluorination patterns and molecular symmetry in the development of fluoroether-based electrolytes for advanced lithium batteries.展开更多
Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regula...Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regulating the microscopic chain conformation of polymers in mixed solvents,and one notable finding is that increasing the pressure can lead to the vanishing of the co-nonsolvency effect.However,the mecha-nisms underlying this phenomenon remain unclear.In this study,we systematically investigated the influence of pressure on the co-nonsolvency effect of single-chain and multi-chain homopolymers in binary mixed good-solvent systems using molecular dynamics simulations.Our results show that the co-nonsolvency-induced chain conformation transition and aggregation behavior significantly depend on pressure in allsingle-chain and multi-chain systems.In single-chain systems,at low pressures,the polymer chain maintains a collapsed state over a wide range of co-solvent fractions(x-range)owing to the co-nonsolvency effect.As the pressure increases,the x-range of the collapsed state gradually narrows,ac-companied by a progressive expansion of the chain.In multichain systems,polymer chains assemble into approximately spherical aggregates over a broad x-range at low pressures owing to the co-nonsolvency effect.Increasing the pressure reduces the x-range for forming aggregates and leads to the formation of loose aggregates or even to a state of dispersed chains at some x-range.These findings indicate that increasing the pressure can weaken or even offset the co-nonsolvency effect in some x-range,which is in good agreement with the experimental observations.Quantitative analysis of the radial density distributions and radial distribution functions reveals that,with increasing pressure,(1)the densities of both polymers and co-solvent molecules within aggregates decrease,while that of the solvent molecule increases;and(2)the effective interac-tions between the polymer and the co-solvent weaken,whereas those between the polymer and solvent strengthen.This enhances the incorpo-ration of solvent molecules within the chains,thereby weakening or even suppressing the chain aggregation.Our study not only elucidates the regulatory mechanism of pressure on the microscopic chain conformations and aggregation behaviors of polymers,but also may provide theo-retical guidance for designing smart polymericmaterials based on mixed solvents.展开更多
Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2...Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2):Eu^(2+)doped fluorosilicate glass and to vividly observe the glass microstructure in experiment through traditional trial-and-error glass preparation method.BaF_(2):Eu^(2+)doped fluorosilicate glassceramics with high transparency,and high photoluminescence(PL)performance were predicted,designed and prepared via molecular dynamics(MD)simulation method.By MD simulation prediction,self-organized nanocrystallization was realized to inhibit the abnormal growth of nanocrystals due to[AlO_(4)]tetrahedra formed in the fluoride-oxide interface.The introduction of NaF reduces the effective phonon energy of the glass because Na+will prompt Al^(3+)to migrate from the fluoride phase to the silicate phase and interface.The local environment of Eu^(2+)is optimized by predicting the doping concentration of EuF_(3) and 2 mol%EuF3 is the best concentration in this work.Glass-ceramics sample GC2Eu as spectral conversion layer was successfully applied on organic solar cells to obtain more available visible phonons with a high photoelectric conversion efficiency(PCE).This work confirms the guidance of molecular dynamics simulation methods for fluorosilicate glasses design.展开更多
In the production process of silicone sealant,mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency.However,the silicone sealant content in mineral ...In the production process of silicone sealant,mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency.However,the silicone sealant content in mineral oil is prone to premature aging,which significantly reduces the mechanical properties of the silicone sealant and severely affects its service life.At the same time,there are few reports on the simulation research of the performance of silicone sealant.In this study,three mixed system models of crosslinking silicone sealant/plasticizer are constructed by the molecular dynamics simulationmethod,and the effect of three influencing factors,namely,crosslinking degree of silicone sealant,plasticizer content and external temperature on the mechanical properties of silicone sealant system is analyzed.The results show that at room temperature,the mechanical properties of the silicone sealant system are enhanced with the increase of its crosslinking degree;At a high crosslinking degree,with the increase of plasticizer content,themechanical properties of the silicone sealant system show an overall decreasing trend.When the methyl silicone oil in the range of 20%,themechanical properties of the silicone sealant appeared tobe a small degree of enhancement;As the temperature increases,the doped mineral oil mechanical properties of silicone sealant declined significantly,while doped with methyl silicone oil silicone sealant and doped with double-ended vinyl silicone oil silicone sealant mechanical properties have better heat resistance.It will provide scientific theoretical guidance for improving and predicting the mechanical properties of silicone sealant.展开更多
Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among oth...Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity.展开更多
Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Method...Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Methods Six bioactive compounds from P.hydropiper were investigated:catechin(CAT1),hyperin(HYP1),ombuin(OMB1),pinosylvin(PSV1),quercetin 3-sulfate(QSF1),and scutellarein(SCR1).Their binding affinities and potential binding pockets were assessed through MD against four bacterial target proteins with Protein Data Bank identifiers(PDB IDs):topoisomerase IV from Escherichia coli(E.coli)(PDB ID:3FV5),Staphylococcus aureus(S.aureus)gyrase ATPase binding domain(PDB ID:3U2K),CviR from Chromobacterium violaceum(C.violaceum)(PDB ID:3QP1),and glycosyl hydrolase from Pseudomonas aeruginosa(P.aeruginosa)(PDB ID:5BX9).Molecular dynamics simulations(MDS)were performed on the most promising compound-protein complexes for 50 nanoseconds(ns).Drug-likeness was evaluated using Lipinski's Rule of Five(RO5),followed by absorption,distribution,metabolism,excretion,and toxicity(ADMET)analysis using SwissADME and pkCSM web servers.Antibacterial activity was evaluated through disc diffusion assays,testing both individual compounds and combinations with conventional antibiotics[cefotaxime(CTX1,30μg/disc),ceftazidime(CAZ1,30μg/disc),and piperacillin(PIP1,100μg/disc)].Results MD revealed strong binding affinity(ranging from-9.3 to-5.9 kcal/mol)for all compounds,with CAT1 showing exceptional binding to 3QP1(-9.3 kcal/mol)and 5BX9(-8.4 kcal/mol).MDS confirmed the stability of CAT1-protein complexes with binding free energies of-84.71 kJ/mol(5BX9-CAT1)and-95.59 kJ/mol(3QP1-CAT1).Five compounds(CAT1,SCR1,PSV1,OMB1,and QSF1)complied with Lipinski's RO5 and showed favorable ADMET profiles.All compounds were non-carcinogenic,with CAT1 classified in the lowest toxicity class(VI).In antibacterial assays,CAT1 demonstrated significant activity against both gram-positive bacteria[Streptococcus pneumoniae(S.pneumoniae),S.aureus,and Bacillus cereus(B.cereus)][zone diameter of inhibition(ZDI):10-22 mm]and gram-negative bacteria[Acinetobacter baumannii(A.baumannii),E.coli,and P.aeruginosa](ZDI:14-27 mm).Synergistic effects were observed when CAT1 was combined with antibiotics and the growth inhibitory indices(GII)was 0.69-1.00.Conclusion P.hydropiper bioactive compounds,particularly CAT1,show promising antibacterial potential through multiple mechanisms,including direct inhibition of bacterial virulence proteins and synergistic activity with conventional antibiotics.The favorable pharmacological properties and low toxicity profiles support their potential development as therapeutic agents against bacterial infections.展开更多
Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the p...Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications.展开更多
Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mec...Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mechanisms at the atomic scale.In this work,AlCoCrFeNi2.1 alloy is taken as the research object.The mechanical behaviors and deformation mechanisms of the FCC and B2 single crystals with different orientations and the FCC/B2 composites with K-S orientation relationship during nanoindentation processes are systematically studied by molecular dynamics simulations.The results show that the mechanical behaviors of FCC single crystals are significantly orientation-dependent,meanwhile,the indentation force of[110]single crystal is the lowest at the elastic-plastic transition point,and that for[100]single crystal is the lowest in plastic deformation stage.Compared with FCC,the stress for B2 single crystals at the elastic-plastic transition point is higher.However,more deformation systems such as stacking faults,twins and dislocation loops are activated in FCC single crystal during the plastic deformation process,resulting in higher indentation force.For composites,the flow stress increases with the increase of B2 phase thickness during the initial stage of deformation.When indenter penetrates heterogeneous interface,the significantly increased deformation system in FCC phase leads to a significant increase in indentation force.The mechanical behaviors and deformation mechanisms depend on the component single crystal.When the thickness of the component layer is less than 15 nm,the heterogeneous interfaces fail to prevent the dislocation slip and improve the indentation force.The results will enrich the plastic deformation mechanisms of multi-principal eutectic alloys and provide guidance for the design of nanocrystalline metallic materials.展开更多
In nature,cavitation bubbles typically appear in clusters,engaging in interactions that create a variety of dynamicmotion patterns.To better understand the behavior ofmultiple bubble collapses and the mechanisms of in...In nature,cavitation bubbles typically appear in clusters,engaging in interactions that create a variety of dynamicmotion patterns.To better understand the behavior ofmultiple bubble collapses and the mechanisms of interbubble interaction,this study employs molecular dynamics simulation combined with a coarse-grained force field.By focusing on collapsemorphology,local density,and pressure,it elucidates how the number and arrangement of bubbles influence the collapse process.The mechanisms behind inter-bubble interactions are also considered.The findings indicate that the collapse speed of unbounded bubbles located in lateral regions is greater than that of the bubbles in the center.Moreover,it is shown that asymmetrical bubble distributions lead to a shorter collapse time overall.展开更多
Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies ...Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies between 1 keV and 150 keV.The results indicate that a smaller grain size leads to more defects forming in grain boundary regions during cascade processes.The impact of high-energy PKA may cause a certain degree of distortion of the grain boundaries,which has a higher probability in systems with smaller grain sizes and becomes more pronounced as the PKA energy increases.The direction of PKA can affect the formation and diffusion pathways of defects.When the PKA direction is perpendicular to the grain boundary,defects preferentially form near the grain boundary regions;by contrast,defects are more inclined to form in the interior of the grains.These results are of great significance for comprehending the changes in the performance of polycrystalline W under the high-energy fusion environments and can provide theoretical guidance for further optimization and application of W-based plasma materials.展开更多
In the organic Rankine cycle,the refrigerant inevitably interacts with the lubricating oil.This study investigates the interaction mechanism between the fourth-generation refrigerant R1336mzz(Z)and the polyol ester(PO...In the organic Rankine cycle,the refrigerant inevitably interacts with the lubricating oil.This study investigates the interaction mechanism between the fourth-generation refrigerant R1336mzz(Z)and the polyol ester(POE)which is a representative component of the lubricating oil,using molecular dynamics simulations.The research focuses on pentaerythritol ester(PEC)with medium to long chain lengths,specifically PEC9.Relevant parameters such as solubility parameters,diffusion coefficients,binding energies,and radial distribution functions were calculated to elucidate the interaction dynamics.The variation in solubility parameters suggests that the miscibility of PEC9 and R1336mzz(Z)diminishes as the number of PEC9 chains increases.Additionally,the compatibility between these two components deteriorates with rising temperature,which is accompanied by a reduction in their binding energy.The simulation results presented in this study offer theoretical insights into the behavior of refrigerant R1336mzz(Z)upon contact with lubricating oil during actual operation,as well as implications for the operational efficiency of the equipment.展开更多
The strategic dispersion of carbon nanotubes(CNTs)within triblock copolymer matrix is key to fabricating nanocomposites with the desired electrical properties.This study investigated the self-assembly and electrical b...The strategic dispersion of carbon nanotubes(CNTs)within triblock copolymer matrix is key to fabricating nanocomposites with the desired electrical properties.This study investigated the self-assembly and electrical behavior of a polystyrene-polybutadiene-polystyrene(SBS)matrix with CNTs of different aspect ratios using hybrid particle-field molecular dynamics simulations.Structural factor analysis of the nanocomposites indicated that CNTs with higher aspect ratios promoted the transition of the SBS matrix from a bicontinuous to a lamellar phase.The resistor network algorithm method showed that the electrical conductivity of SBS and CNTs nanocomposites was influenced by the interplay between the CNTs aspect ratios,concentrations,and domain sizes of the triblock copolymer SBS.Our research sheds light on the relationship between CNTs dispersion and the electrical behavior of SBS/CNTs nanocomposites,guiding the engineering of materials to achieve desired electrical properties through the modulation of CNTs aspect ratios and tailored sizing of triblock copolymer domains.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.11574244 for G.Y.G.)the XJTU Research Fund for AI Science (Grant No.2025YXYC011 for G.Y.G.)the Hong Kong Global STEM Professorship Scheme (for X.C.Z.)。
文摘Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely oriented.Using NbOCl_(2) monolayer with competing ferroelectric(FE)and antiferroelectric(AFE)phases as a 2D material platform,we demonstrate the emergence of intrinsic antiferroelectricity in NbOCl_(2) monolayer under experimentally accessible shear strain,along with new functionality associated with electric field-induced AFE-to-FE phase transition.Specifically,the complex configuration space accommodating FE and AFE phases,polarization switching kinetics,and finite temperature thermodynamic properties of 2D NbOCl_(2) are all accurately predicted by large-scale molecular dynamics simulations based on deep learning interatomic potential model.Moreover,room temperature stable antiferroelectricity with low polarization switching barrier and one-dimensional collinear polarization arrangement is predicted in shear-deformed NbOCl_(2) monolayer.The transition from AFE to FE phase in 2D NbOCl_(2) can be triggered by a low critical electric field,leading to a double polarization–electric(P–E)loop with small hysteresis.A new type of optoelectronic device composed of AFE-NbOCl_(2) is proposed,enabling electric“writing”and nonlinear optical“reading”logical operation with fast operation speed and low power consumption.
基金funded by Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(Grant No.:226Z2605G)the Key Project from Hebei Provincial Department of Science and Technology,China(Grant No.:21372601D)+6 种基金Graduate Student Innovation Grant Program of Hebei Medical University,China(Grant No.:XCXZZB202303)Science Research Project of Hebei Education Department,China(Grant Nos.:BJ2025046,and CYZD202501)Program for Young Scientists in the Field of Natural Science of Hebei Medical University,China(Program Nos.:CYCZ2023010,CYCZ2023011,CYQD2021011,CYQD2021015 and CYQD2023012)Traditional Chinese Medicine Administration Project of Hebei Province,China(Project No.:2025427)National Natural Science Foundation of China(Grant No.:32100771)the Hebei Provincial Medical Science Research Project Plan,China(Project Nos.:20240241 and 20220200)Shijiazhuang Science and Technology Bureau,China(Grant Nos.:241200487A,and 07202204).
文摘Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor agents a research hotspot.In this study,artificial intelligence(AI)technology and molecular simulation strategies were fully integrated to construct an efficient and precise drug screening pipeline,which combined Voting strategy based on compound-protein interaction(CPI)prediction models,cascade molecular docking,and molecular dynamic(MD)simulations.The biological potential of the screened compounds was further evaluated through enzymatic and cellular activity assays.Among the identified compounds,Cmpd.18 exhibited more potent HDAC6 enzyme inhibitory activity(IC_(50)=5.41 nM)than that of tubastatin A(TubA)(IC_(50)=15.11 nM),along with a favorable subtype selectivity profile(selectivity index z 117.23 for HDAC1),which was further verified by the Western blot analysis.Additionally,Cmpd.18 induced G2/M phase arrest and promoted apoptosis in HCT-116 cells,exerting desirable antiproliferative activity(IC_(50)=2.59 mM).Furthermore,based on long-term MD simulation trajectory,the key residues facilitating Cmpd.18's binding were identified by decomposition free energy analysis,thereby elucidating its binding mechanism.Moreover,the representative conformation analysis also indicated that Cmpd.18 could stably bind to the active pocket in an effective conformation,thus demonstrating the potential for in-depth research of the 2-(2-phenoxyethyl)pyridazin-3(2H)-one scaffold.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金supported by the National Natural Science Foundation of China(22438005,22108117).
文摘Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)molecular dynamics(MD)simulation offers a microscopic angle to view the self-assembly of BCPs.Although some molecular details are sacrificed during CG processes,this method exhibits remarkable computational efficiency.In this study,a comprehensive CG model for polystyrene-block-poly(2-vinylpyridine),PS-b-P2VP,one of the most extensively studied BCPs for its high Flory-Huggins interaction parameter,is constructed,with parameters optimized using target values derived from all-atom MD simulations.The CG model precisely coincides with various classical self-assembling morphologies observed in experimental studies,matching the theoretical phase diagrams.Moreover,the conformational asymmetry of the experimental phase diagram is also clearly revealed by our simulation results,and the phase boundaries obtained from simulations are highly consistent with experimental results.The CG model is expected to extend to simulate the self-assembly behaviors of other BCPs in addition to PS-b-P2VP,thus increasing understanding of the microphase separation of BCPs from the molecular level.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA0719000)the Science Foundation of China University of Petroleum,Beijing(No.2462025XKBH007)the Research Foundation of China University of Petroleum-Beijing at Karamay(No.XQZX20240019)。
文摘Shale gas in southern China is found to contain economically valuable helium(He),which is inconsistent with conventional perspective that hydrocarbon gases in shale would dilute He to sub-economic levels.The adsorption of gases in the nanopores of organic matter is considered a crucial factor influencing the shale gas composition.The adsorption behaviors of He,methane(CH_(4))and their mixtures in kerogen nanopores were performed by the Grand Canonical Monte Carlo simulation.The molecular simulations of pure He reveal that He can be adsorbed in shale and the adsorption capacity of He increases with the burial depth of shale.Before the hydrocarbon generation from kerogen,He has been continually generated in shale,the simulations further demonstrate that pure He can be partially preserved in shale as adsorbed gas phase.The simulations of competitive adsorption between CH_(4) and He show that the adsorption selectivity of CH_(4)/He is consistently higher than 1.0 under the simulated conditions.This indicates that the previously adsorbed He will be displaced by CH_(4) and subsequently concentrated in hydrocarbon gas as free gas phase during the process of hydrocarbon gas generation from kerogen.After the termination of hydrocarbon gas generation,He continues to be generated in shale and preferentially concentrated in free shale gas.Therefore,the concentration of He in shale gas will gradually increase with the generation time of He.In addition,our simulations indicate that high pressure and deep burial depth can enhance the adsorption of He in kerogen,suggesting that deeply buried organic-rich shale probably retains more adsorbed helium.Molecular simulations of He adsorption provide new insights into the accumulation process of He in shale gas and are of great significance for assessing helium resource potential in shale gas.
基金supported by the National Natural Science Foundation of China(Grant No.42102145)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462022YXZZ007)。
文摘Shale gas serves as a significant strategic successor resource for future oil and gas reserves and production in China.Thus,a profound understanding of the adsorption mechanism of shale gas in shale reservoirs is crucial to accurately predict and evaluate shale gas reserves.In this study,we utilized two simulation methods,molecular dynamics simulation and Giant Canonical Monte Carlo simulation to examine the adsorption characteristics of kerogen under varying temperature and pressure conditions.We compared the results under identical temperature and pressure conditions for different mineral-kerogen composite models.Moreover,we examined the effects of temperature,pressure,and mineral species on the kerogen adsorption mechanism.The results indicate that shale formations with high organic matter content and a substantial proportion of non-clay inorganic minerals,as well as those subjected to higher temperature and pressure conditions than the shallow layer,possess a greater capacity to accommodate shale gas.This study examined the adsorption mechanism of methane in shale gas using different mineral-kerogen composite models.The findings of this study provide more accurate guidance and support for efficient development of shale gas.
基金the financial support and funding provided by the National Natural Science Foundation of China(Youth Talent Program,Key Special Project,Grant No.52341401 and Distinguished Scholar Program with a Grant No.52425402)High-level Start-up Funding from Peking University Shenzhen Graduate School,Shenzhen Science and Technology Foundation(Grant No.JCYJ20230807120807016)+2 种基金High-level Startup Funding from China University of Petroleum-Beijing(Grant No.2462024YJRC033)the China Postdoctoral Science(CPS)Foundation(Certificate No.2024M750106)the Postdoctoral Fellowship Program of CPS(Grant No.GZC20240051)。
文摘Direct viscosification of CO_(2) offers promising alternative for mobility control and reduction in residual brine saturation,thus to improve the CO_(2) trapping in saline aquifers.Hydrocarbon oligomers,recognized for their exceptional properties,are considered as one of the most promising viscosifiers in displacement of brine-saturated porous media.However,the molecular-level mechanisms governing the solubility and viscosification of hydrocarbon oligomers in scCO_(2) remain poorly understood.In this study,we employ coarse-grained molecular models to advance our understanding in the effects of molecular structure of hydrocarbon oligomers on their solubility in scCO_(2).The coarse-grained models of five hydrocarbon oligomers with different numbers of methyl-branch(n-C32,P1D-2,P1D-3,P1D-6 and squalane)are established to investigate their effects on solubilization in scCO_(2).We demonstrate that the number of methyl groups has a monotonic correlation with the solubility of hydrocarbon oligomers when the molecular weights of oligomers are comparable.The radial distribution function reveals nC32,P1D and squalane are uniformly dispersed with separation distances of approximately 1.0–2.0 nm.The interaction energy between hydrocarbon oligomers and CO_(2) shows that the number of methylbranch in hydrocarbon oligomers can directly influence their solubility in scCO_(2).Molecular simulation results demonstrate that the interaction distances between the methyl-branch and CO_(2) are smaller than those of other molecular fragments.There are approximately 20%more CO_(2) molecules interacting with methyl-branch than with other parts.This work sets the stage for our future molecular dynamics study in viscosification by hydrocarbon oligomers with different branching length and interfacial phenomena in multiphase systems.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(92372104)Guangdong Basic and Applied Basic Research Foundation(2022A1515110016)+3 种基金the Recruitment Program of Guangdong(2016ZT06C322)R&D Program of Guangzhou(2023A04J1364)Fundamental Research Funds for the Central Universities(2024ZYGXZR043)TCL Science and Technology Innovation Fund。
文摘Electrolyte engineering with fluoroethers as solvents offers promising potential for high-performance lithium metal batteries.Despite recent progresses achieved in designing and synthesizing novel fluoroether solvents,a systematic understanding of how fluorination patterns impact electrolyte performance is still lacking.We investigate the effects of fluorination patterns on properties of electrolytes using fluorinated 1,2-diethoxyethane(FDEE)as single solvents.By employing quantum calculations,molecular dynamics simulations,and interpretable machine learning,we establish significant correlations between fluorination patterns and electrolyte properties.Higher fluorination levels enhance FDEE stability but decrease conductivity.The symmetry of fluorination sites is critical for stability and viscosity,while exerting minimal influence on ionic conductivity.FDEEs with highly symmetric fluorination sites exhibit favorable viscosity,stability,and overall electrolyte performance.Conductivity primarily depends on lithium-anion dissociation or association.These findings provide design principles for rational fluoroether electrolyte design,emphasizing the trade-offs between stability,viscosity,and conductivity.Our work underscores the significance of considering fluorination patterns and molecular symmetry in the development of fluoroether-based electrolytes for advanced lithium batteries.
基金support provided by the National Natural Science Foundation of China(Nos.22173051,21829301,21774066),PCSIRT(IRT1257)the College Discipline Innovation and Intelligence Introduction Program(111 Project(B16027)+2 种基金the International Cooperation Base(No.2016D01025)Tianjin International Joint Research and Development Center)P.Zhang acknowledges the financial support provided by NSFC(No.22473024).
文摘Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regulating the microscopic chain conformation of polymers in mixed solvents,and one notable finding is that increasing the pressure can lead to the vanishing of the co-nonsolvency effect.However,the mecha-nisms underlying this phenomenon remain unclear.In this study,we systematically investigated the influence of pressure on the co-nonsolvency effect of single-chain and multi-chain homopolymers in binary mixed good-solvent systems using molecular dynamics simulations.Our results show that the co-nonsolvency-induced chain conformation transition and aggregation behavior significantly depend on pressure in allsingle-chain and multi-chain systems.In single-chain systems,at low pressures,the polymer chain maintains a collapsed state over a wide range of co-solvent fractions(x-range)owing to the co-nonsolvency effect.As the pressure increases,the x-range of the collapsed state gradually narrows,ac-companied by a progressive expansion of the chain.In multichain systems,polymer chains assemble into approximately spherical aggregates over a broad x-range at low pressures owing to the co-nonsolvency effect.Increasing the pressure reduces the x-range for forming aggregates and leads to the formation of loose aggregates or even to a state of dispersed chains at some x-range.These findings indicate that increasing the pressure can weaken or even offset the co-nonsolvency effect in some x-range,which is in good agreement with the experimental observations.Quantitative analysis of the radial density distributions and radial distribution functions reveals that,with increasing pressure,(1)the densities of both polymers and co-solvent molecules within aggregates decrease,while that of the solvent molecule increases;and(2)the effective interac-tions between the polymer and the co-solvent weaken,whereas those between the polymer and solvent strengthen.This enhances the incorpo-ration of solvent molecules within the chains,thereby weakening or even suppressing the chain aggregation.Our study not only elucidates the regulatory mechanism of pressure on the microscopic chain conformations and aggregation behaviors of polymers,but also may provide theo-retical guidance for designing smart polymericmaterials based on mixed solvents.
基金Project supported by the National Natural Science Foundation of China(52172008,51872255)the Key Research and Development Project of Zhejiang Province(2021C01174)。
文摘Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2):Eu^(2+)doped fluorosilicate glass and to vividly observe the glass microstructure in experiment through traditional trial-and-error glass preparation method.BaF_(2):Eu^(2+)doped fluorosilicate glassceramics with high transparency,and high photoluminescence(PL)performance were predicted,designed and prepared via molecular dynamics(MD)simulation method.By MD simulation prediction,self-organized nanocrystallization was realized to inhibit the abnormal growth of nanocrystals due to[AlO_(4)]tetrahedra formed in the fluoride-oxide interface.The introduction of NaF reduces the effective phonon energy of the glass because Na+will prompt Al^(3+)to migrate from the fluoride phase to the silicate phase and interface.The local environment of Eu^(2+)is optimized by predicting the doping concentration of EuF_(3) and 2 mol%EuF3 is the best concentration in this work.Glass-ceramics sample GC2Eu as spectral conversion layer was successfully applied on organic solar cells to obtain more available visible phonons with a high photoelectric conversion efficiency(PCE).This work confirms the guidance of molecular dynamics simulation methods for fluorosilicate glasses design.
基金supported by The Guangxi Scholarship Fund of Guangxi Education Department(GED),Guangxi Key Research and Development Project(Grant No.Guike AB24010217)the Major Special Project of Guangxi Science and Technology(GrantNo.Guike AA23062020)+1 种基金the Guangxi Science and Technology Base and Talent Project(Grant No.Guike AD20297016)the Guangxi Minzu University Startup Project for Talent Introduction in 2019(Grant No.2019KJQD11).
文摘In the production process of silicone sealant,mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency.However,the silicone sealant content in mineral oil is prone to premature aging,which significantly reduces the mechanical properties of the silicone sealant and severely affects its service life.At the same time,there are few reports on the simulation research of the performance of silicone sealant.In this study,three mixed system models of crosslinking silicone sealant/plasticizer are constructed by the molecular dynamics simulationmethod,and the effect of three influencing factors,namely,crosslinking degree of silicone sealant,plasticizer content and external temperature on the mechanical properties of silicone sealant system is analyzed.The results show that at room temperature,the mechanical properties of the silicone sealant system are enhanced with the increase of its crosslinking degree;At a high crosslinking degree,with the increase of plasticizer content,themechanical properties of the silicone sealant system show an overall decreasing trend.When the methyl silicone oil in the range of 20%,themechanical properties of the silicone sealant appeared tobe a small degree of enhancement;As the temperature increases,the doped mineral oil mechanical properties of silicone sealant declined significantly,while doped with methyl silicone oil silicone sealant and doped with double-ended vinyl silicone oil silicone sealant mechanical properties have better heat resistance.It will provide scientific theoretical guidance for improving and predicting the mechanical properties of silicone sealant.
基金supported by the Science and Technology Research Project from Education Department of Jilin Province (No. JJKH20231296KJ)the Natural Science Foundation of Science and Technology Department of Jilin Province (Joint Fund Project) (No. YDZJ202201ZYTS340)+9 种基金the Fundamental Research Funds for the Central Universities (No. 2412022ZD013)the Science and Technology Development Plan Project of Jilin Province (Nos. SKL202302030, SKL202402017, 20210204126YY, 20230204113YY, 20240602003RC, 20210402059GH)the National Natural Science Foundation of China (Nos. 22174137, 22322410, 92372102 and 22073094)the Cooperation Funding of Changchun with Chinese Academy of Sciences (No. 22SH13)the Capital Construction Fund Projects within the Budget of Jilin Province (No. 2023C042–5)the University Level Scientific Research Projects of Ordinary Universities in Xinjiang Uygur Autonomous Region (No. 2022YQSN002)the State Key Laboratory of Molecular Engineering of Polymers (Fudan University) (No. K2024–11)the Program for Young Scholars in Regional Development of CASthe essential support of the Network and Computing Center, CIAC, CASthe Computing Center of Jilin Province。
文摘Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity.
基金Research Grants of Senior Research Fellowship in favor of first author(Gloak Majumdar)from Council of Scientific and Industrial Research(CSIR,New Delhi,Government of India)(CSIR-SRF)with Award No.09/1151/(0008)2020-EMR-I.
文摘Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Methods Six bioactive compounds from P.hydropiper were investigated:catechin(CAT1),hyperin(HYP1),ombuin(OMB1),pinosylvin(PSV1),quercetin 3-sulfate(QSF1),and scutellarein(SCR1).Their binding affinities and potential binding pockets were assessed through MD against four bacterial target proteins with Protein Data Bank identifiers(PDB IDs):topoisomerase IV from Escherichia coli(E.coli)(PDB ID:3FV5),Staphylococcus aureus(S.aureus)gyrase ATPase binding domain(PDB ID:3U2K),CviR from Chromobacterium violaceum(C.violaceum)(PDB ID:3QP1),and glycosyl hydrolase from Pseudomonas aeruginosa(P.aeruginosa)(PDB ID:5BX9).Molecular dynamics simulations(MDS)were performed on the most promising compound-protein complexes for 50 nanoseconds(ns).Drug-likeness was evaluated using Lipinski's Rule of Five(RO5),followed by absorption,distribution,metabolism,excretion,and toxicity(ADMET)analysis using SwissADME and pkCSM web servers.Antibacterial activity was evaluated through disc diffusion assays,testing both individual compounds and combinations with conventional antibiotics[cefotaxime(CTX1,30μg/disc),ceftazidime(CAZ1,30μg/disc),and piperacillin(PIP1,100μg/disc)].Results MD revealed strong binding affinity(ranging from-9.3 to-5.9 kcal/mol)for all compounds,with CAT1 showing exceptional binding to 3QP1(-9.3 kcal/mol)and 5BX9(-8.4 kcal/mol).MDS confirmed the stability of CAT1-protein complexes with binding free energies of-84.71 kJ/mol(5BX9-CAT1)and-95.59 kJ/mol(3QP1-CAT1).Five compounds(CAT1,SCR1,PSV1,OMB1,and QSF1)complied with Lipinski's RO5 and showed favorable ADMET profiles.All compounds were non-carcinogenic,with CAT1 classified in the lowest toxicity class(VI).In antibacterial assays,CAT1 demonstrated significant activity against both gram-positive bacteria[Streptococcus pneumoniae(S.pneumoniae),S.aureus,and Bacillus cereus(B.cereus)][zone diameter of inhibition(ZDI):10-22 mm]and gram-negative bacteria[Acinetobacter baumannii(A.baumannii),E.coli,and P.aeruginosa](ZDI:14-27 mm).Synergistic effects were observed when CAT1 was combined with antibiotics and the growth inhibitory indices(GII)was 0.69-1.00.Conclusion P.hydropiper bioactive compounds,particularly CAT1,show promising antibacterial potential through multiple mechanisms,including direct inhibition of bacterial virulence proteins and synergistic activity with conventional antibiotics.The favorable pharmacological properties and low toxicity profiles support their potential development as therapeutic agents against bacterial infections.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52271105)。
文摘Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications.
基金supported by the Natural Science Foundation of Hebei Province(E2024209052)the Youth Scholars Promotion Plan of North China University of Science and Technology(QNTJ202307).
文摘Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mechanisms at the atomic scale.In this work,AlCoCrFeNi2.1 alloy is taken as the research object.The mechanical behaviors and deformation mechanisms of the FCC and B2 single crystals with different orientations and the FCC/B2 composites with K-S orientation relationship during nanoindentation processes are systematically studied by molecular dynamics simulations.The results show that the mechanical behaviors of FCC single crystals are significantly orientation-dependent,meanwhile,the indentation force of[110]single crystal is the lowest at the elastic-plastic transition point,and that for[100]single crystal is the lowest in plastic deformation stage.Compared with FCC,the stress for B2 single crystals at the elastic-plastic transition point is higher.However,more deformation systems such as stacking faults,twins and dislocation loops are activated in FCC single crystal during the plastic deformation process,resulting in higher indentation force.For composites,the flow stress increases with the increase of B2 phase thickness during the initial stage of deformation.When indenter penetrates heterogeneous interface,the significantly increased deformation system in FCC phase leads to a significant increase in indentation force.The mechanical behaviors and deformation mechanisms depend on the component single crystal.When the thickness of the component layer is less than 15 nm,the heterogeneous interfaces fail to prevent the dislocation slip and improve the indentation force.The results will enrich the plastic deformation mechanisms of multi-principal eutectic alloys and provide guidance for the design of nanocrystalline metallic materials.
基金funded by the Natural Science Foundation of China[U20A20292]Shandong Province Science andTechnology SMES InnovationAbility Improvement Project[2023TSGC0005]China Postdoctoral Science Foundation[2024M752697].
文摘In nature,cavitation bubbles typically appear in clusters,engaging in interactions that create a variety of dynamicmotion patterns.To better understand the behavior ofmultiple bubble collapses and the mechanisms of interbubble interaction,this study employs molecular dynamics simulation combined with a coarse-grained force field.By focusing on collapsemorphology,local density,and pressure,it elucidates how the number and arrangement of bubbles influence the collapse process.The mechanisms behind inter-bubble interactions are also considered.The findings indicate that the collapse speed of unbounded bubbles located in lateral regions is greater than that of the bubbles in the center.Moreover,it is shown that asymmetrical bubble distributions lead to a shorter collapse time overall.
基金Project supported by the National MCF Energy Research and Development Program of China(Grant No.2018YFE0308101)the National Key Research and Development Program of China(Grant No.2018YFB0704000)+1 种基金the Suqian Science and Technology Program(Grant No.K202337)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.23KJD490001).
文摘Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies between 1 keV and 150 keV.The results indicate that a smaller grain size leads to more defects forming in grain boundary regions during cascade processes.The impact of high-energy PKA may cause a certain degree of distortion of the grain boundaries,which has a higher probability in systems with smaller grain sizes and becomes more pronounced as the PKA energy increases.The direction of PKA can affect the formation and diffusion pathways of defects.When the PKA direction is perpendicular to the grain boundary,defects preferentially form near the grain boundary regions;by contrast,defects are more inclined to form in the interior of the grains.These results are of great significance for comprehending the changes in the performance of polycrystalline W under the high-energy fusion environments and can provide theoretical guidance for further optimization and application of W-based plasma materials.
基金supported by Hainan Provincial Natural Science Foundation of China(No.422CXTD509).
文摘In the organic Rankine cycle,the refrigerant inevitably interacts with the lubricating oil.This study investigates the interaction mechanism between the fourth-generation refrigerant R1336mzz(Z)and the polyol ester(POE)which is a representative component of the lubricating oil,using molecular dynamics simulations.The research focuses on pentaerythritol ester(PEC)with medium to long chain lengths,specifically PEC9.Relevant parameters such as solubility parameters,diffusion coefficients,binding energies,and radial distribution functions were calculated to elucidate the interaction dynamics.The variation in solubility parameters suggests that the miscibility of PEC9 and R1336mzz(Z)diminishes as the number of PEC9 chains increases.Additionally,the compatibility between these two components deteriorates with rising temperature,which is accompanied by a reduction in their binding energy.The simulation results presented in this study offer theoretical insights into the behavior of refrigerant R1336mzz(Z)upon contact with lubricating oil during actual operation,as well as implications for the operational efficiency of the equipment.
基金financially supported by the National Natural Science Foundation of China(Nos.52273019,62173065,22133002,22273031,and 12274056)Fundamental Research Funds for the Central Universities(No.04442024074)+2 种基金NationalKey R&D Program of China(No.2022YFB3707300)Beijing Natural Science Foundation(No.4242040)Scientific Research Funds Project of Liaoning Provincial Department of Education(No.LJKZ0034)。
文摘The strategic dispersion of carbon nanotubes(CNTs)within triblock copolymer matrix is key to fabricating nanocomposites with the desired electrical properties.This study investigated the self-assembly and electrical behavior of a polystyrene-polybutadiene-polystyrene(SBS)matrix with CNTs of different aspect ratios using hybrid particle-field molecular dynamics simulations.Structural factor analysis of the nanocomposites indicated that CNTs with higher aspect ratios promoted the transition of the SBS matrix from a bicontinuous to a lamellar phase.The resistor network algorithm method showed that the electrical conductivity of SBS and CNTs nanocomposites was influenced by the interplay between the CNTs aspect ratios,concentrations,and domain sizes of the triblock copolymer SBS.Our research sheds light on the relationship between CNTs dispersion and the electrical behavior of SBS/CNTs nanocomposites,guiding the engineering of materials to achieve desired electrical properties through the modulation of CNTs aspect ratios and tailored sizing of triblock copolymer domains.