ADS Injector-II linear accelerator is mainly composed of ECR ion source,LEBT,RFQ,MEBT,a superconducting accelerating segment and HEBT.The superconducting accelerating segment is composed of two HWR010 cavity cryomodul...ADS Injector-II linear accelerator is mainly composed of ECR ion source,LEBT,RFQ,MEBT,a superconducting accelerating segment and HEBT.The superconducting accelerating segment is composed of two HWR010 cavity cryomodules,a taper cavity cryomodule and a spoke cavity cryomodule(CM1+CM2+CM3+CM4),which has accelerated the proton beam to 25 MeV in Jun.2017.展开更多
Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,includi...Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).展开更多
As a core part of subsea production systems,subsea control modules(SCMs)are costly,difficult,and expensive to install and inconvenient to use in underwater maintenance.Therefore,performance and function tests must be ...As a core part of subsea production systems,subsea control modules(SCMs)are costly,difficult,and expensive to install and inconvenient to use in underwater maintenance.Therefore,performance and function tests must be carried out before launching SCMs.This study developed a testing device and an SCM test by investigating SCMs and their underwater.The testing device includes four parts:a hydraulic station,an SCM test stand,a signal generating device,and an electronic test unit.First,the basic indices of the testing device were determined from the performance and working parameters of the SCM.Second,the design scheme of the testing device for the SCM was tentatively proposed,and each testing device was designed.Finally,a practical measurement of the SCM,in combination with the hydraulic station,SCM test stand,signal generator,electronic unit,and highpressure water tank,was carried out according to the test requirements.The measurement mainly involved equipment inspection before testing and an experimental test for the SCM.The validity and feasibility of the testing device and method were simultaneously verified through an association test.展开更多
The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The th...The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The thermal-hydraulic effect of the TBM-combined cooling circuit during a cyclic operation in ITER has been studied using the system code RELAP5. The RELAP5 is based on an one-dimensional, transient two-fluid model for the flow of a two-phase steam-water mixture that can contain noncondensable components like Helium. The RELAP5models are modified to take the cyclic operation of the circulator, heat, exchanger, bypass, valves etc in to account. A sequence of operational phases is investigated, starting from the cold state through the heating phase that brings the system to a stand-by condition, followed by typical power cycles applied in ITER. The results show that the implemented control mechanisms keep the inlet temperature to the TBM and the total mass flow rate at the required values through all phases.展开更多
Renewable power modules such as the thermoelectric generator and the PV panel are featured by low output voltage and low power.Aiming at maximum output power,a high energy efficiency module integrated converter(MIC),a...Renewable power modules such as the thermoelectric generator and the PV panel are featured by low output voltage and low power.Aiming at maximum output power,a high energy efficiency module integrated converter(MIC),as shown in Fig.1,and its control strategy for series connected distributed(SCD)renewable power systems,as shown in Fig.2,are proposed.The topology of the MIC is an improved one of the conventional H-bridge Buck-Boost converter.展开更多
In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera th...In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera that obtained by high-precision attitude sensor to estimate the image motion vector and then to compensate for image, the purpose of stabilizing the image sequence can be a- chieved. Experiments demonstrate that this method has a high image stabilization precision, and the up to 16 frame/s video output rate completely meets the real-time requirements.展开更多
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a...Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.展开更多
Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversio...Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
This work proposes a novel heating and cooling system,with incorporated thermoelectric module,that can achieve energy balance using a self-water supply heat exchange subsystem.The thermoelectric effect is used to achi...This work proposes a novel heating and cooling system,with incorporated thermoelectric module,that can achieve energy balance using a self-water supply heat exchange subsystem.The thermoelectric effect is used to achieve controlled and adjustable heating of the circulating water.Simulations were conducted to study the thermal performance of the system while it simultaneously produces hot and cold water,with different working conditions for the hot-and cold-side water outlets.The results show that the water temperature at the hot side outlet increases from 32℃to 75℃when the power increases from 4.5 to 50 W.Additionally,the use of thermoelectric modules to heat water and recover waste heat is 22%more efficient than ordinary electric water heating systems.展开更多
Traditional intensity modulated two-level electrical time-division multiplexing (ETDM) transmission systems working at 100 -112 Gbit/s were investigated. The complete ETDM systems based on monolithically integrated ...Traditional intensity modulated two-level electrical time-division multiplexing (ETDM) transmission systems working at 100 -112 Gbit/s were investigated. The complete ETDM systems based on monolithically integrated transmitter and receiver modules were demonstrated with biterror-rate (BER) performance of 10-s at 107 Gbit/s, and near error-free standard forward error correction (FEC) threshold (2 × 10 -3) at 112 Gbit/s. The experiment results showed that directly modulated high-speed ETDM transmission systems with the symbol rates at 100 Gbaud and beyond were promising candidate for cost-effective 100 GbE applications and might be a preform of the next generation of Terabit/s Ethernet.展开更多
In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street la...In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street lamp based on nanoLOC AVR nttlule is researched in this paper, the system can real-timely detect the solar street lamp's battery voltage, corrent, tonperature, internal resistance, residual capacity and so on. And the collected data is transmitted to computer' s management via wireless connnunication to achieve recording, storage, analysis and processing for various parameters.展开更多
The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected syst...The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected systems is outlined by taking into account the sequential structure of the connnections. The paper extends the, coordinate, module-theoretic studies from the elementary algebraic systems theory to include the case oj such linear interconnected systems which need not to be controllable or observable. Also, the properties of controllability and observability, the decoupling zeros and the signal Making issues are characterized.展开更多
Reverse logistics are playing more and more important role with the development of competition and the social responsibility of enterprises.It could be divided into commission acceptance,recycling and returned goods h...Reverse logistics are playing more and more important role with the development of competition and the social responsibility of enterprises.It could be divided into commission acceptance,recycling and returned goods handling.Reverse logistics information system consists of the database establishment,network structure and logic structure design.The collection,storage,processing,transmission and output functions of the reverse logistics information system were discussed in the thesis.Eventually,it established seven modules for the reverse logistics information system including the system management module,oriented module,returning goods processing module,reverse transportation management module,information sharing module,statistical analysis module and cost control module.展开更多
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management...All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.展开更多
Objective Selective estrogen receptor modulators(SERMs)have demonstrated efficacy in the treatment of hypogonadism in males and male factor infertility.Two SERMs,clomiphene citrate and tamoxifen,are now prescribed for...Objective Selective estrogen receptor modulators(SERMs)have demonstrated efficacy in the treatment of hypogonadism in males and male factor infertility.Two SERMs,clomiphene citrate and tamoxifen,are now prescribed for off-label use to treat both conditions in males.However,existing literature compares mixed protocols with active management.We aimed to conduct a meta-analysis to evaluate the effect of clomiphene and tamoxifen versus placebo on natural pregnancy rates.Methods We conducted a comprehensive systematic review of electronic databases:MEDLINE,PubMed/PMC,EMBASE,CINAHL,Cochrane Central Register of Controlled Trials(CENTRAL),Scopus,Google Scholar,and Web of Science.Articles satisfying all selection criteria were analyzed.The primary outcome was the incidence of pregnancy after receiving the treatment.Secondary outcomes included serum follicle-stimulating hormone,luteinizing hormone,and testosterone levels,and sperm count and motility.We calculated the pooled odds ratio,risk ratio,and risk difference to ascertain possible alterations in the direction of the pooled effect size.Results Ten randomized controlled trials were ultimately included and underwent data extraction.Clomiphene citrate and placebo groups had similar pregnancy rates(10.4%and 7.1%,respectively;odds ratio 1.30[95%confidence interval 0.27–6.17];p=0.74).No meta-analysis could be calculated for pregnancy rates in tamoxifen versus placebo groups.Heterogeneity among the studies of both SERMs ranged from low to high.Conclusion Although clomiphene citrate and tamoxifen are often used off-label for the treatment of male infertility secondary to hypogonadism,studies of SERMs in the treatment of idiopathic male factor infertility are limited and heterogenous,preventing this meta-analysis from investigating the efficacy of SERMs on male infertility.The effect of clomiphene citrate or tamoxifen on the pregnancy rate remains uncertain.展开更多
Nowadays, in a household PV (photovoltaic) generation system, it is generally connecting PV modules in series and then output to the power-conditioner. However, when PV modules are mismatched, it will lead to a wron...Nowadays, in a household PV (photovoltaic) generation system, it is generally connecting PV modules in series and then output to the power-conditioner. However, when PV modules are mismatched, it will lead to a wrong MPPT (maximum power point tracking) to all modules and a power decreasing of the whole system. Aiming at this problem, this paper presents the idea which improves the MPPT without changing the conventional power-conditioner, by adding a Buck type DC-DC (direct current) converter behind each module. Simulations of PSIM (power simulation) and experiments are taken to prove this theory. The result shows that, by this idea, the generated power of the conventional PV generation system can be greatly increased under the condition of mismatch.展开更多
Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address ...Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address this challenge,a mushroom recognition method was proposed based on an erase module integrated into the EL-DenseNet model.EL-DenseNet,an extension of DenseNet,incorporated an erase attention module designed to enhance sensitivity to visible features.The erase module helped eliminate complex backgrounds and irrelevant information,allowing the mushroom body to be preserved and increasing recognition accuracy in cluttered environments.Considering the difficulty in distinguishing similar mushroom species,label smoothing regularization was employed to mitigate mislabeling errors that commonly arose from human observers.This strategy converted hard labels into soft labels during training,reducing the model’s overreliance on noisy labels and improving its generalization ability.Experimental results showed that the proposed EL-DenseNet,when combined with transfer learning,achieved a recognition accuracy of 96.7%for mushrooms in occluded and complex backgrounds.Compared with the original DenseNet and other classic models,this approach demonstrated superior accuracy and robustness,providing a promising solution for intelligent mushroom recognition.展开更多
Self-assembled prodrug nanomedicine has emerged as an advanced platform for antitumor therapy,mainly comprise drug modules,response modules and modification modules.However,existing studies usually compare the differe...Self-assembled prodrug nanomedicine has emerged as an advanced platform for antitumor therapy,mainly comprise drug modules,response modules and modification modules.However,existing studies usually compare the differences between single types of modification modules,neglecting the impact of steric-hindrance effect caused by chemical structure.Herein,single-tailed modification module with low-steric-hindrance effect and two-tailed modification module with high-steric-hindrance effect were selected to construct paclitaxel prodrugs(P-LA_(C18)and P-BAC18),and the in-depth insights of the sterichindrance effect on prodrug nanoassemblies were explored.Notably,the size stability of the two-tailed prodrugs was enhanced due to improved intermolecular interactions and steric hindrance.Single-tailed prodrug nanoassemblies were more susceptible to attack by redox agents,showing faster drug release and stronger antitumor efficacy,but with poorer safety.In contrast,two-tailed prodrug nanoassemblies exhibited significant advantages in terms of pharmacokinetics,tumor accumulation and safety due to the good size stability,thus ensuring equivalent antitumor efficacy at tolerance dose.These findings highlighted the critical role of steric-hindrance effect of the modification module in regulating the structureactivity relationship of prodrug nanoassemblies and proposed new perspectives into the precise design of self-assembled prodrugs for high-performance cancer therapeutics.展开更多
With the rapid development of the new energy automotive industry,the enhancement of lithium battery performance and production efficiency has become critical.This article explores the application of artificial intelli...With the rapid development of the new energy automotive industry,the enhancement of lithium battery performance and production efficiency has become critical.This article explores the application of artificial intelligence technology in the lithium battery module PACK line,analyzing how it optimizes the production process and improves production efficiency,and predicts future development trends.The PACK line is an important link in battery manufacturing,involving complex processes such as cell sorting,welding,assembly and testing.The application of AI technology in image recognition,data analysis and predictive maintenance provides new solutions for the intelligent upgrading of the PACK line.This article describes the process of the PACK line in detail,analyzes the challenges under current technological levels,and reviews the application cases of AI technology in the manufacturing industry.The study aims to provide theoretical and practical guidance for the intelligent development of lithium battery module PACK lines,discussing the integration of AI technology,its actual performance,technical challenges,and solutions.It is expected that AI technology will play a greater role in the PACK line,and future research will focus on improving the adaptability of models,developing efficient algorithms,and further integrating into the production line.展开更多
文摘ADS Injector-II linear accelerator is mainly composed of ECR ion source,LEBT,RFQ,MEBT,a superconducting accelerating segment and HEBT.The superconducting accelerating segment is composed of two HWR010 cavity cryomodules,a taper cavity cryomodule and a spoke cavity cryomodule(CM1+CM2+CM3+CM4),which has accelerated the proton beam to 25 MeV in Jun.2017.
基金supported by the Hellenic Foundation for Research and Innovation,HFRI,“2nd Call for HFRI Research Projects to support Faculty Members&Researchers”Project 02667 to GL.
文摘Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).
基金supported by the National Key R&D Program of China(2018YFC0310500)High-Tech Ship Research Projects sponsored by the Ministry of Industry and Information Technology(2018GXB01)Yantai City school land integration development project(2019XDRHXMPT29)research and development and test platform of underwater production system。
文摘As a core part of subsea production systems,subsea control modules(SCMs)are costly,difficult,and expensive to install and inconvenient to use in underwater maintenance.Therefore,performance and function tests must be carried out before launching SCMs.This study developed a testing device and an SCM test by investigating SCMs and their underwater.The testing device includes four parts:a hydraulic station,an SCM test stand,a signal generating device,and an electronic test unit.First,the basic indices of the testing device were determined from the performance and working parameters of the SCM.Second,the design scheme of the testing device for the SCM was tentatively proposed,and each testing device was designed.Finally,a practical measurement of the SCM,in combination with the hydraulic station,SCM test stand,signal generator,electronic unit,and highpressure water tank,was carried out according to the test requirements.The measurement mainly involved equipment inspection before testing and an experimental test for the SCM.The validity and feasibility of the testing device and method were simultaneously verified through an association test.
基金The project supported by European Fusion Development Agreement (EFDA) Technology Work Program
文摘The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The thermal-hydraulic effect of the TBM-combined cooling circuit during a cyclic operation in ITER has been studied using the system code RELAP5. The RELAP5 is based on an one-dimensional, transient two-fluid model for the flow of a two-phase steam-water mixture that can contain noncondensable components like Helium. The RELAP5models are modified to take the cyclic operation of the circulator, heat, exchanger, bypass, valves etc in to account. A sequence of operational phases is investigated, starting from the cold state through the heating phase that brings the system to a stand-by condition, followed by typical power cycles applied in ITER. The results show that the implemented control mechanisms keep the inlet temperature to the TBM and the total mass flow rate at the required values through all phases.
文摘Renewable power modules such as the thermoelectric generator and the PV panel are featured by low output voltage and low power.Aiming at maximum output power,a high energy efficiency module integrated converter(MIC),as shown in Fig.1,and its control strategy for series connected distributed(SCD)renewable power systems,as shown in Fig.2,are proposed.The topology of the MIC is an improved one of the conventional H-bridge Buck-Boost converter.
文摘In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera that obtained by high-precision attitude sensor to estimate the image motion vector and then to compensate for image, the purpose of stabilizing the image sequence can be a- chieved. Experiments demonstrate that this method has a high image stabilization precision, and the up to 16 frame/s video output rate completely meets the real-time requirements.
基金supported by the National Natural Science Foundation of China(61473176,61402260,61573225)the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities(ZR2015JL021,ZR2015JL003)the Open Program from the State Key Laboratory of Management and Control for Complex Systems(20140102)
文摘Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.
文摘Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
文摘This work proposes a novel heating and cooling system,with incorporated thermoelectric module,that can achieve energy balance using a self-water supply heat exchange subsystem.The thermoelectric effect is used to achieve controlled and adjustable heating of the circulating water.Simulations were conducted to study the thermal performance of the system while it simultaneously produces hot and cold water,with different working conditions for the hot-and cold-side water outlets.The results show that the water temperature at the hot side outlet increases from 32℃to 75℃when the power increases from 4.5 to 50 W.Additionally,the use of thermoelectric modules to heat water and recover waste heat is 22%more efficient than ordinary electric water heating systems.
基金Supported by the European Committee6th Research Framework Program in the Project HECTO
文摘Traditional intensity modulated two-level electrical time-division multiplexing (ETDM) transmission systems working at 100 -112 Gbit/s were investigated. The complete ETDM systems based on monolithically integrated transmitter and receiver modules were demonstrated with biterror-rate (BER) performance of 10-s at 107 Gbit/s, and near error-free standard forward error correction (FEC) threshold (2 × 10 -3) at 112 Gbit/s. The experiment results showed that directly modulated high-speed ETDM transmission systems with the symbol rates at 100 Gbaud and beyond were promising candidate for cost-effective 100 GbE applications and might be a preform of the next generation of Terabit/s Ethernet.
文摘In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street lamp based on nanoLOC AVR nttlule is researched in this paper, the system can real-timely detect the solar street lamp's battery voltage, corrent, tonperature, internal resistance, residual capacity and so on. And the collected data is transmitted to computer' s management via wireless connnunication to achieve recording, storage, analysis and processing for various parameters.
文摘The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected systems is outlined by taking into account the sequential structure of the connnections. The paper extends the, coordinate, module-theoretic studies from the elementary algebraic systems theory to include the case oj such linear interconnected systems which need not to be controllable or observable. Also, the properties of controllability and observability, the decoupling zeros and the signal Making issues are characterized.
基金Course Construction of Customs Practice,China(No.z201308003)
文摘Reverse logistics are playing more and more important role with the development of competition and the social responsibility of enterprises.It could be divided into commission acceptance,recycling and returned goods handling.Reverse logistics information system consists of the database establishment,network structure and logic structure design.The collection,storage,processing,transmission and output functions of the reverse logistics information system were discussed in the thesis.Eventually,it established seven modules for the reverse logistics information system including the system management module,oriented module,returning goods processing module,reverse transportation management module,information sharing module,statistical analysis module and cost control module.
基金the funding and generous support of the National Natural Science Foundation of China(52103263,52271249)the Key Project of International Science&Technology Cooperation of Shaanxi Province(2023-GHZD-09)+5 种基金the Key Project of Science Foundation of Education Department of Shaanxi Province(22JY011)the Key Project of Scientific Research and Development of Shaanxi Province(2023GXLH-070)the Qinchuangyuan"Scientist+Engineer"Team of Shaanxi Province(2023KXJ-069)the Key Research and Development Program of Shaanxi(2023-YBGY-488)the Sci-tech Innovation Team of Shaanxi Province(2024RS-CXTD-46)the Key Research and Development Program of Shaanxi Province(2020ZDLGY13-11).
文摘All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.
文摘Objective Selective estrogen receptor modulators(SERMs)have demonstrated efficacy in the treatment of hypogonadism in males and male factor infertility.Two SERMs,clomiphene citrate and tamoxifen,are now prescribed for off-label use to treat both conditions in males.However,existing literature compares mixed protocols with active management.We aimed to conduct a meta-analysis to evaluate the effect of clomiphene and tamoxifen versus placebo on natural pregnancy rates.Methods We conducted a comprehensive systematic review of electronic databases:MEDLINE,PubMed/PMC,EMBASE,CINAHL,Cochrane Central Register of Controlled Trials(CENTRAL),Scopus,Google Scholar,and Web of Science.Articles satisfying all selection criteria were analyzed.The primary outcome was the incidence of pregnancy after receiving the treatment.Secondary outcomes included serum follicle-stimulating hormone,luteinizing hormone,and testosterone levels,and sperm count and motility.We calculated the pooled odds ratio,risk ratio,and risk difference to ascertain possible alterations in the direction of the pooled effect size.Results Ten randomized controlled trials were ultimately included and underwent data extraction.Clomiphene citrate and placebo groups had similar pregnancy rates(10.4%and 7.1%,respectively;odds ratio 1.30[95%confidence interval 0.27–6.17];p=0.74).No meta-analysis could be calculated for pregnancy rates in tamoxifen versus placebo groups.Heterogeneity among the studies of both SERMs ranged from low to high.Conclusion Although clomiphene citrate and tamoxifen are often used off-label for the treatment of male infertility secondary to hypogonadism,studies of SERMs in the treatment of idiopathic male factor infertility are limited and heterogenous,preventing this meta-analysis from investigating the efficacy of SERMs on male infertility.The effect of clomiphene citrate or tamoxifen on the pregnancy rate remains uncertain.
文摘Nowadays, in a household PV (photovoltaic) generation system, it is generally connecting PV modules in series and then output to the power-conditioner. However, when PV modules are mismatched, it will lead to a wrong MPPT (maximum power point tracking) to all modules and a power decreasing of the whole system. Aiming at this problem, this paper presents the idea which improves the MPPT without changing the conventional power-conditioner, by adding a Buck type DC-DC (direct current) converter behind each module. Simulations of PSIM (power simulation) and experiments are taken to prove this theory. The result shows that, by this idea, the generated power of the conventional PV generation system can be greatly increased under the condition of mismatch.
文摘Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address this challenge,a mushroom recognition method was proposed based on an erase module integrated into the EL-DenseNet model.EL-DenseNet,an extension of DenseNet,incorporated an erase attention module designed to enhance sensitivity to visible features.The erase module helped eliminate complex backgrounds and irrelevant information,allowing the mushroom body to be preserved and increasing recognition accuracy in cluttered environments.Considering the difficulty in distinguishing similar mushroom species,label smoothing regularization was employed to mitigate mislabeling errors that commonly arose from human observers.This strategy converted hard labels into soft labels during training,reducing the model’s overreliance on noisy labels and improving its generalization ability.Experimental results showed that the proposed EL-DenseNet,when combined with transfer learning,achieved a recognition accuracy of 96.7%for mushrooms in occluded and complex backgrounds.Compared with the original DenseNet and other classic models,this approach demonstrated superior accuracy and robustness,providing a promising solution for intelligent mushroom recognition.
基金supported by the National Natural Science Foundation of China,(Nos.82272151,82204318)Liaoning Revitalization Talents Program(No.XLYC2203083)+2 种基金Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(No.RC220389)Postdoctoral Fellowship Program of CPSF(No.GZC20231732)China Postdoctoral Science Foundation(Nos.2023TQ0222,2023MD744229).
文摘Self-assembled prodrug nanomedicine has emerged as an advanced platform for antitumor therapy,mainly comprise drug modules,response modules and modification modules.However,existing studies usually compare the differences between single types of modification modules,neglecting the impact of steric-hindrance effect caused by chemical structure.Herein,single-tailed modification module with low-steric-hindrance effect and two-tailed modification module with high-steric-hindrance effect were selected to construct paclitaxel prodrugs(P-LA_(C18)and P-BAC18),and the in-depth insights of the sterichindrance effect on prodrug nanoassemblies were explored.Notably,the size stability of the two-tailed prodrugs was enhanced due to improved intermolecular interactions and steric hindrance.Single-tailed prodrug nanoassemblies were more susceptible to attack by redox agents,showing faster drug release and stronger antitumor efficacy,but with poorer safety.In contrast,two-tailed prodrug nanoassemblies exhibited significant advantages in terms of pharmacokinetics,tumor accumulation and safety due to the good size stability,thus ensuring equivalent antitumor efficacy at tolerance dose.These findings highlighted the critical role of steric-hindrance effect of the modification module in regulating the structureactivity relationship of prodrug nanoassemblies and proposed new perspectives into the precise design of self-assembled prodrugs for high-performance cancer therapeutics.
文摘With the rapid development of the new energy automotive industry,the enhancement of lithium battery performance and production efficiency has become critical.This article explores the application of artificial intelligence technology in the lithium battery module PACK line,analyzing how it optimizes the production process and improves production efficiency,and predicts future development trends.The PACK line is an important link in battery manufacturing,involving complex processes such as cell sorting,welding,assembly and testing.The application of AI technology in image recognition,data analysis and predictive maintenance provides new solutions for the intelligent upgrading of the PACK line.This article describes the process of the PACK line in detail,analyzes the challenges under current technological levels,and reviews the application cases of AI technology in the manufacturing industry.The study aims to provide theoretical and practical guidance for the intelligent development of lithium battery module PACK lines,discussing the integration of AI technology,its actual performance,technical challenges,and solutions.It is expected that AI technology will play a greater role in the PACK line,and future research will focus on improving the adaptability of models,developing efficient algorithms,and further integrating into the production line.