This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary la...This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.展开更多
A series of sensitivity tests are performed to test the stability and sensibility of the Modified Soil-Plant-Atmosphere Scheme (MSPAS), which was wholly introduced in a previous paper. The numerical simulation results...A series of sensitivity tests are performed to test the stability and sensibility of the Modified Soil-Plant-Atmosphere Scheme (MSPAS), which was wholly introduced in a previous paper. The numerical simulation results from the experiments show good agreement with physical reality. Besides, some of the results are illuminating. Together with the first paper, it is concluded that MSPAS is a simple but effective model, and it is practically valuable in the research work of desertification control and reforestation in China.展开更多
Aimed at the computational aeroacoustics multi-scale problem of complex configurations discretized with multi-size mesh, the flux reconstruction method based on modified Weight Essentially Non-Oscillatory(WENO) sche...Aimed at the computational aeroacoustics multi-scale problem of complex configurations discretized with multi-size mesh, the flux reconstruction method based on modified Weight Essentially Non-Oscillatory(WENO) scheme is proposed at the interfaces of multi-block grids.With the idea of Dispersion-Relation-Preserving(DRP) scheme, different weight coefficients are obtained by optimization, so that it is in WENO schemes with various characteristics of dispersion and dissipation. On the basis, hybrid flux vector splitting method is utilized to intelligently judge the amplitude of the gap between grid interfaces. After the simulation and analysis of 1D convection equation with different initial conditions, modified WENO scheme is proved to be able to independently distinguish the gap amplitude and generate corresponding dissipation according to the grid resolution. Using the idea of flux reconstruction at grid interfaces, modified WENO scheme with increasing dissipation is applied at grid points, while DRP scheme with low dispersion and dissipation is applied at the inner part of grids. Moreover, Gauss impulse spread and periodic point sound source flow among three cylinders with multi-scale grids are carried out. The results show that the flux reconstruction method at grid interfaces is capable of dealing with Computational Aero Acoustics(CAA) multi-scale problems.展开更多
A third-order numerical scheme is presented to give approximate solutions to multi-dimensional hyperbolic conservation laws only using modified coefficients of an essentially non-oscillatory (MCENO) scheme without i...A third-order numerical scheme is presented to give approximate solutions to multi-dimensional hyperbolic conservation laws only using modified coefficients of an essentially non-oscillatory (MCENO) scheme without increasing the base points during construction of the scheme. The construction process shows that the modified coefficient approach preserves favourable properties inherent in the original essentially nonoscillatory (ENO) scheme for its essential non-oscillation, total variation bounded (TVB), etc. The new scheme improves accuracy by one order compared to the original one. The proposed MCENO scheme is applied to simulate two-dimensional Rayleigh-Taylor (RT) instability with densities 1:3 and 1:100, and solve the Lax shock-wave tube numerically. The ratio of CPU time used to implement MCENO, the .third-order ENO and fifth-order weighed ENO (WENO) schemes is 0.62:1:2.19. This indicates that MCENO improves accuracy in smooth regions and has higher accuracy and better efficiency compared to the original ENO scheme.展开更多
Mobile Ad Hoc Networks consist of nodes which are wireless and get organized based on the transmission requirement. These nodes are mobile nodes, so they communicate with each other without any fixed access point. Thi...Mobile Ad Hoc Networks consist of nodes which are wireless and get organized based on the transmission requirement. These nodes are mobile nodes, so they communicate with each other without any fixed access point. This type of network faces several attacks because of its mobility nature. In MANET, black hole attacks may cause packet dropping or misrouting of packets during transmission from sender to receiver. This may lead to performance degradation in the network. To surmount this issue, we propose the modified secret sharing scheme to provide the data protection from unauthorized nodes, consistency of data and genuineness. In this algorithm, initially the identification of black hole attacks is achieved and followed by data protection from malicious nodes and also this scheme checks for the reality of the data. Here, we detect the misbehaviour that is dropping or misrouting using verifiable secret sharing scheme. The proposed algorithm achieves the better packet delivery ratio, misbehaviour detection efficiency, fewer packets overhead and end-to-end delay than the existing schemes. These can be viewed in the simulation results.展开更多
This study quantitatively analyzes the effects of cloud seeding on precipitation and seasonal variations over the Boryeong Dam region,which has the lowest dam storage in South Korea,based on a one-year numerical simul...This study quantitatively analyzes the effects of cloud seeding on precipitation and seasonal variations over the Boryeong Dam region,which has the lowest dam storage in South Korea,based on a one-year numerical simulation for2021.The Morrison microphysics scheme in the WRF(Weather Research and Forecasting)model was modified to estimate differences in precipitation between simulations with seeding materials(Ag I and Ca Cl2;SEED)and without them(UNSD).The effect of cloud seeding on increasing precipitation or artificial rainfall(AR)between the two simulations was highest in August(average:0.21 mm;31%of the SEED-simulated monthly mean)and lowest in January(average:0.003 mm;30%).This large AR may be attributable to a combination of abundant moisture from the summer monsoon climate and enhanced cloud droplet growth resulting from cloud seeding.In the analysis of seasonal representative cases,cloud seeding demonstrated more pronounced effects in spring and summer,with mean 180-min accumulated AR values of 0.46 and 0.43 mm,respectively,within the study area.In the spring,where an actual flight experiment was conducted,the simulated mean180-min accumulated AR(1.41 mm)in the flight experiment area was close to the observed value(1.61 mm)for the same area.Additionally,cloud seeding promoted the hygroscopic growth of water vapor,thereby reducing the cloud water mixing ratio and increasing the rain water mixing ratio.Seasonal cross-sectional analysis further highlighted the impact of cloud seeding on changes in these two mixing ratios,with the most pronounced effects observed in spring and summer.展开更多
This paper is concerned with the numerical investigation of a macroscopic model for complex fluids in“1+2”dimension case.We consider the planar pressure driven flow where the direction of the molecules is constraine...This paper is concerned with the numerical investigation of a macroscopic model for complex fluids in“1+2”dimension case.We consider the planar pressure driven flow where the direction of the molecules is constrained in the shear plane.The modified Crank-Nicolson finite difference scheme satisfying a discrete energy law will be developed.By using this scheme,it is observed numerically that the direction of the molecules will tumble from the boundary layer and later on the inner layer with a much longer time period.This is consistent with the theoretical prediction.Moreover,we find some complex phenomena,where the tumbling rises from boundary layer and is then embedded into the interior area more clearly when the viscosity coefficientµof the macro flow has a larger value.The norm of the molecular director d will endure greater change as well.This implies that the viscosity of flow plays the role of an accelerator in the whole complex fluids.Comparing these results with the theoretical analysis,we can find that the gradient of the velocity has direct impact on the tumbling phenomena.These results show that the proposed scheme is capable of exploring some physical phenomena embedded in the macro-micro model.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.40275004)the State Key Laboratory of Atmosphere Physics and Chemistry,and the City University of Hong Kong(Grant No.8780046)the City University of Hong Kong Strategic Research(Grant No.7001038)
文摘This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.
基金the National Natural Science Foundation of China (Grant No. 40275004) the State Key Laboratory of Atmosphere Physics and Chemistry, and the City University of Hong Kong Grant 8780046 the City University of Hong Kong Strategic Research (Grant No.7001038).
文摘A series of sensitivity tests are performed to test the stability and sensibility of the Modified Soil-Plant-Atmosphere Scheme (MSPAS), which was wholly introduced in a previous paper. The numerical simulation results from the experiments show good agreement with physical reality. Besides, some of the results are illuminating. Together with the first paper, it is concluded that MSPAS is a simple but effective model, and it is practically valuable in the research work of desertification control and reforestation in China.
文摘Aimed at the computational aeroacoustics multi-scale problem of complex configurations discretized with multi-size mesh, the flux reconstruction method based on modified Weight Essentially Non-Oscillatory(WENO) scheme is proposed at the interfaces of multi-block grids.With the idea of Dispersion-Relation-Preserving(DRP) scheme, different weight coefficients are obtained by optimization, so that it is in WENO schemes with various characteristics of dispersion and dissipation. On the basis, hybrid flux vector splitting method is utilized to intelligently judge the amplitude of the gap between grid interfaces. After the simulation and analysis of 1D convection equation with different initial conditions, modified WENO scheme is proved to be able to independently distinguish the gap amplitude and generate corresponding dissipation according to the grid resolution. Using the idea of flux reconstruction at grid interfaces, modified WENO scheme with increasing dissipation is applied at grid points, while DRP scheme with low dispersion and dissipation is applied at the inner part of grids. Moreover, Gauss impulse spread and periodic point sound source flow among three cylinders with multi-scale grids are carried out. The results show that the flux reconstruction method at grid interfaces is capable of dealing with Computational Aero Acoustics(CAA) multi-scale problems.
基金the National Natural Science Foundation of China(Nos.10676031,50675185)the Ph.D. Programs Foundation of Ministry of Education of China(No.20070530003)+1 种基金the Key Project of Chinese Ministry of Education(No.208093)the Scientific Research Fund of Hunan Provincial Education Department(No.07A068)
文摘A third-order numerical scheme is presented to give approximate solutions to multi-dimensional hyperbolic conservation laws only using modified coefficients of an essentially non-oscillatory (MCENO) scheme without increasing the base points during construction of the scheme. The construction process shows that the modified coefficient approach preserves favourable properties inherent in the original essentially nonoscillatory (ENO) scheme for its essential non-oscillation, total variation bounded (TVB), etc. The new scheme improves accuracy by one order compared to the original one. The proposed MCENO scheme is applied to simulate two-dimensional Rayleigh-Taylor (RT) instability with densities 1:3 and 1:100, and solve the Lax shock-wave tube numerically. The ratio of CPU time used to implement MCENO, the .third-order ENO and fifth-order weighed ENO (WENO) schemes is 0.62:1:2.19. This indicates that MCENO improves accuracy in smooth regions and has higher accuracy and better efficiency compared to the original ENO scheme.
文摘Mobile Ad Hoc Networks consist of nodes which are wireless and get organized based on the transmission requirement. These nodes are mobile nodes, so they communicate with each other without any fixed access point. This type of network faces several attacks because of its mobility nature. In MANET, black hole attacks may cause packet dropping or misrouting of packets during transmission from sender to receiver. This may lead to performance degradation in the network. To surmount this issue, we propose the modified secret sharing scheme to provide the data protection from unauthorized nodes, consistency of data and genuineness. In this algorithm, initially the identification of black hole attacks is achieved and followed by data protection from malicious nodes and also this scheme checks for the reality of the data. Here, we detect the misbehaviour that is dropping or misrouting using verifiable secret sharing scheme. The proposed algorithm achieves the better packet delivery ratio, misbehaviour detection efficiency, fewer packets overhead and end-to-end delay than the existing schemes. These can be viewed in the simulation results.
基金funded by the Korea Meteorological Administration Research and Development Program“Research on Weather Modification and Cloud Physics”(Grant No.KMA2018-00224)supported by Korea Institute of Marine Science&Technology Promotion(KIMST)funded by the Ministry of Oceans and Fisheries,Korea(RS-202502217872)supported by an NRF grant funded by the Korean government(MSIT)(Grant No.NRF2023R1A2C1002367)。
文摘This study quantitatively analyzes the effects of cloud seeding on precipitation and seasonal variations over the Boryeong Dam region,which has the lowest dam storage in South Korea,based on a one-year numerical simulation for2021.The Morrison microphysics scheme in the WRF(Weather Research and Forecasting)model was modified to estimate differences in precipitation between simulations with seeding materials(Ag I and Ca Cl2;SEED)and without them(UNSD).The effect of cloud seeding on increasing precipitation or artificial rainfall(AR)between the two simulations was highest in August(average:0.21 mm;31%of the SEED-simulated monthly mean)and lowest in January(average:0.003 mm;30%).This large AR may be attributable to a combination of abundant moisture from the summer monsoon climate and enhanced cloud droplet growth resulting from cloud seeding.In the analysis of seasonal representative cases,cloud seeding demonstrated more pronounced effects in spring and summer,with mean 180-min accumulated AR values of 0.46 and 0.43 mm,respectively,within the study area.In the spring,where an actual flight experiment was conducted,the simulated mean180-min accumulated AR(1.41 mm)in the flight experiment area was close to the observed value(1.61 mm)for the same area.Additionally,cloud seeding promoted the hygroscopic growth of water vapor,thereby reducing the cloud water mixing ratio and increasing the rain water mixing ratio.Seasonal cross-sectional analysis further highlighted the impact of cloud seeding on changes in these two mixing ratios,with the most pronounced effects observed in spring and summer.
基金Hui Zhang’s research is partially supported by the Key Basic Research Project of the Ministry of Education of China under Grant No.107016the State Key Basic Research Project of China under Grant No.2005CB321704.
文摘This paper is concerned with the numerical investigation of a macroscopic model for complex fluids in“1+2”dimension case.We consider the planar pressure driven flow where the direction of the molecules is constrained in the shear plane.The modified Crank-Nicolson finite difference scheme satisfying a discrete energy law will be developed.By using this scheme,it is observed numerically that the direction of the molecules will tumble from the boundary layer and later on the inner layer with a much longer time period.This is consistent with the theoretical prediction.Moreover,we find some complex phenomena,where the tumbling rises from boundary layer and is then embedded into the interior area more clearly when the viscosity coefficientµof the macro flow has a larger value.The norm of the molecular director d will endure greater change as well.This implies that the viscosity of flow plays the role of an accelerator in the whole complex fluids.Comparing these results with the theoretical analysis,we can find that the gradient of the velocity has direct impact on the tumbling phenomena.These results show that the proposed scheme is capable of exploring some physical phenomena embedded in the macro-micro model.