Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study comp...Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data.展开更多
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule...Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.展开更多
Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while...Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.展开更多
This paper studies the problem of designing a modelbased decentralized dynamic periodic event-triggering mechanism(DDPETM)for networked control systems(NCSs)subject to packet losses and external disturbances.Firstly,t...This paper studies the problem of designing a modelbased decentralized dynamic periodic event-triggering mechanism(DDPETM)for networked control systems(NCSs)subject to packet losses and external disturbances.Firstly,the entire NCSs,comprising the triggering mechanism,packet losses and output-based controller,are unified into a hybrid dynamical framework.Secondly,by introducing dynamic triggering variables,the DDPETM is designed to conserve network resources while guaranteeing desired performance properties and tolerating the maximum allowable number of successive packet losses.Thirdly,some stability conditions are derived using the Lyapunov approach.Differing from the zero-order-hold(ZOH)case,the model-based control sufficiently exploits the model information at the controller side.Between two updates,the controller predicts the plant state based on the models and received feedback information.With the model-based control,less transmission may be expected than with ZOH.Finally,numerical examples and comparative experiments demonstrate the effectiveness of the proposed method.展开更多
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The...Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.展开更多
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med...Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.展开更多
Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementa...Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementation of low-density paritycheck(LDPC)decoding under resource-restricted space platforms.Particularly,due to the supply restriction and cost issues of high-speed on-board devices such as analog-to-digital converters(ADCs),the input of LDPC decoding will be usually constrained by hard-decision channel output.To tackle this challenge,density-evolution-based theoretical analysis is firstly performed to identify the cause of performance degradation in the conventional binaryinitialized iterative decoding(BIID)algorithm.Then,a computation-efficient decoding algorithm named multiary-initialized iterative decoding with early termination(MIID-ET)is proposed,which improves the error-correcting performance and computation efficiency by using a reliability-based initialization method and a threshold-based decoding termination rule.Finally,numerical simulations are conducted on example codes of rates 7/8 and 1/2 to evaluate the performance of different LDPC decoding algorithms,where the proposed MIID-ET outperforms the BIID with a coding gain of 0.38 dB and variable node calculation saving of 37%.With this advantage,the proposed MIID-ET can notably reduce LDPC decoder’s hardware implementation complexity under the same bit error rate performance,which successfully doubles the total throughput to 10 Gbps on a single-chip FPGA.展开更多
To improve the decoding performance of quantum error-correcting codes in asymmetric noise channels,a neural network-based decoding algorithm for bias-tailored quantum codes is proposed.The algorithm consists of a bias...To improve the decoding performance of quantum error-correcting codes in asymmetric noise channels,a neural network-based decoding algorithm for bias-tailored quantum codes is proposed.The algorithm consists of a biased noise model,a neural belief propagation decoder,a convolutional optimization layer,and a multi-objective loss function.The biased noise model simulates asymmetric error generation,providing a training dataset for decoding.The neural network,leveraging dynamic weight learning and a multi-objective loss function,mitigates error degeneracy.Additionally,the convolutional optimization layer enhances early-stage convergence efficiency.Numerical results show that for bias-tailored quantum codes,our decoder performs much better than the belief propagation(BP)with ordered statistics decoding(BP+OSD).Our decoder achieves an order of magnitude improvement in the error suppression compared to higher-order BP+OSD.Furthermore,the decoding threshold of our decoder for surface codes reaches a high threshold of 20%.展开更多
Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Althoug...Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.展开更多
This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman codi...This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...展开更多
A tablet consisting of direct-acting antiviral agents,ledipasvir(a NS5 A protein inhibitor) and sofosbuvir(a NS5 B polymerase inhibitor),is the first fixed-dose preparation used in the antiviral therapy of hepatit...A tablet consisting of direct-acting antiviral agents,ledipasvir(a NS5 A protein inhibitor) and sofosbuvir(a NS5 B polymerase inhibitor),is the first fixed-dose preparation used in the antiviral therapy of hepatitis C.A model-based meta-analysis of ledipasvir and GS331007,the primary metabolite of sofosbuvir,enabled the integration of pharmacokinetic(PK) information from separate clinical trials and the quantitative characterization of the population pharmacokinetics of these two drugs.A systematic publication search was conducted for the clinical studies of ledipasvir and sofosbuvir.A total of 401 arm-level aggregate concentrations of GS331007 and 188 concentrations of ledipasvir were used for PK modeling.A two-compartment disposition model was used for both ledipasvir and GS331007.Zero-order absorption was applied for ledipasvir PK modeling,and a combined zero- and first-order absorption was used for the modeling of GS331007.Absorption lag was observed in concentration-time profiles of both ledipasvir and GS331007.To aid the development of direct-acting antiviral drugs,our established PK models provided a basis for the further PK-viral kinetic studies of ledipasvir and sofosbuvir.展开更多
Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first...Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.展开更多
The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount o...The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.展开更多
The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS ...The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS (personal communications systems). This paper concentrateson channel decoders that exploit the residual redundancy inherent in the enhanced variable ratecodec bitstream. This residual redundancy is quantified by modeling the parameters as first orderMarkov chains and computing the entropy rate based on the relative frequencies of transitions.Moreover, this residual redundancy can be exploited by an appropriately 'tuned' channel decoder toprovide substantial coding gain when compared with the decoders that do not exploit it. Channelcoding schemes include convolutional codes, and iteratively decoded parallel concatenatedconvolutional 'turbo' codes.展开更多
Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rat...Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.展开更多
Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BC...Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.展开更多
Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list...Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.展开更多
This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the developmen...This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes design- based and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data.We review studies on large-area forest surveys based on model-assisted, model- based, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters.展开更多
Based on the ideas of controlling relative quality and rearranging bitplanes, a new ROI coding method for JPEG2000 was proposed, which shifts and rearranges bitplanes in units of bitplane groups. It can code arbitrary...Based on the ideas of controlling relative quality and rearranging bitplanes, a new ROI coding method for JPEG2000 was proposed, which shifts and rearranges bitplanes in units of bitplane groups. It can code arbitrary shaped ROI without shape coding, and reserve almost arbitrary percent of background information. It also can control the relative quality of progressive decoded images. In addition, it is easy to be implemented and has low computational cost.展开更多
基金financially supported by the vice chancellor for research and technology of Urmia University
文摘Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data.
基金supported by the National Natural Science Foundation of China(No.12104141).
文摘Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20242194)the National Natural Science Foundation of China(Grant Nos.52175251 and 52205268)+1 种基金the Industry Key Technology Research Fund Project of Northwestern Polytechnical University(Grant No.HYGJXM202318)the National Basic Scientific Research Program(Grant No.JCKY2021206B005).
文摘Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.
基金supported by the National Natural Science Foundation of China(U21A20477,61722302,61573069,61903290)the Fundamental Research Funds for the Central Universities(DUT19ZD218).
文摘This paper studies the problem of designing a modelbased decentralized dynamic periodic event-triggering mechanism(DDPETM)for networked control systems(NCSs)subject to packet losses and external disturbances.Firstly,the entire NCSs,comprising the triggering mechanism,packet losses and output-based controller,are unified into a hybrid dynamical framework.Secondly,by introducing dynamic triggering variables,the DDPETM is designed to conserve network resources while guaranteeing desired performance properties and tolerating the maximum allowable number of successive packet losses.Thirdly,some stability conditions are derived using the Lyapunov approach.Differing from the zero-order-hold(ZOH)case,the model-based control sufficiently exploits the model information at the controller side.Between two updates,the controller predicts the plant state based on the models and received feedback information.With the model-based control,less transmission may be expected than with ZOH.Finally,numerical examples and comparative experiments demonstrate the effectiveness of the proposed method.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LL.Z012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901).
文摘Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
基金supported by the National Natural Science Foundation of China(NSFC)with project ID 62071498the Guangdong National Science Foundation(GDNSF)with project ID 2024A1515010213.
文摘Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1005000)the National Natural Science Foundation of China(Grant No.62101308 and 62025110).
文摘Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementation of low-density paritycheck(LDPC)decoding under resource-restricted space platforms.Particularly,due to the supply restriction and cost issues of high-speed on-board devices such as analog-to-digital converters(ADCs),the input of LDPC decoding will be usually constrained by hard-decision channel output.To tackle this challenge,density-evolution-based theoretical analysis is firstly performed to identify the cause of performance degradation in the conventional binaryinitialized iterative decoding(BIID)algorithm.Then,a computation-efficient decoding algorithm named multiary-initialized iterative decoding with early termination(MIID-ET)is proposed,which improves the error-correcting performance and computation efficiency by using a reliability-based initialization method and a threshold-based decoding termination rule.Finally,numerical simulations are conducted on example codes of rates 7/8 and 1/2 to evaluate the performance of different LDPC decoding algorithms,where the proposed MIID-ET outperforms the BIID with a coding gain of 0.38 dB and variable node calculation saving of 37%.With this advantage,the proposed MIID-ET can notably reduce LDPC decoder’s hardware implementation complexity under the same bit error rate performance,which successfully doubles the total throughput to 10 Gbps on a single-chip FPGA.
基金supported by the National Natural Science Foundation of China(Grant Nos.62371240,61802175,62401266,and 12201300)the National Key R&D Program of China(Grant No.2022YFB3103800)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20241452)the Fundamental Research Funds for the Central Universities(Grant No.30923011014)the fund of Laboratory for Advanced Computing and Intelligence Engineering(Grant No.2023-LYJJ-01-009)。
文摘To improve the decoding performance of quantum error-correcting codes in asymmetric noise channels,a neural network-based decoding algorithm for bias-tailored quantum codes is proposed.The algorithm consists of a biased noise model,a neural belief propagation decoder,a convolutional optimization layer,and a multi-objective loss function.The biased noise model simulates asymmetric error generation,providing a training dataset for decoding.The neural network,leveraging dynamic weight learning and a multi-objective loss function,mitigates error degeneracy.Additionally,the convolutional optimization layer enhances early-stage convergence efficiency.Numerical results show that for bias-tailored quantum codes,our decoder performs much better than the belief propagation(BP)with ordered statistics decoding(BP+OSD).Our decoder achieves an order of magnitude improvement in the error suppression compared to higher-order BP+OSD.Furthermore,the decoding threshold of our decoder for surface codes reaches a high threshold of 20%.
基金supported by Key Laboratory of Cyberspace Security,Ministry of Education,China。
文摘Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.
文摘This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...
基金Janssen Research & DevelopmentChina,Pfizer Scholarship for Pharmacometrics during this project
文摘A tablet consisting of direct-acting antiviral agents,ledipasvir(a NS5 A protein inhibitor) and sofosbuvir(a NS5 B polymerase inhibitor),is the first fixed-dose preparation used in the antiviral therapy of hepatitis C.A model-based meta-analysis of ledipasvir and GS331007,the primary metabolite of sofosbuvir,enabled the integration of pharmacokinetic(PK) information from separate clinical trials and the quantitative characterization of the population pharmacokinetics of these two drugs.A systematic publication search was conducted for the clinical studies of ledipasvir and sofosbuvir.A total of 401 arm-level aggregate concentrations of GS331007 and 188 concentrations of ledipasvir were used for PK modeling.A two-compartment disposition model was used for both ledipasvir and GS331007.Zero-order absorption was applied for ledipasvir PK modeling,and a combined zero- and first-order absorption was used for the modeling of GS331007.Absorption lag was observed in concentration-time profiles of both ledipasvir and GS331007.To aid the development of direct-acting antiviral drugs,our established PK models provided a basis for the further PK-viral kinetic studies of ledipasvir and sofosbuvir.
基金The National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.
基金supported by National Natural Science Foundation of China(Grant No. 10772061)Heilongjiang Provincial Natural Science Foundation of China(Grant No. ZJG0704)
文摘The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.
文摘The enhanced variable rate codec (EVRC) is a standard for the 'Speech ServiceOption 3 for Wideband Spread Spectrum Digital System,' which has been employed in both IS-95cellular systems and ANSI J-STC-008 PCS (personal communications systems). This paper concentrateson channel decoders that exploit the residual redundancy inherent in the enhanced variable ratecodec bitstream. This residual redundancy is quantified by modeling the parameters as first orderMarkov chains and computing the entropy rate based on the relative frequencies of transitions.Moreover, this residual redundancy can be exploited by an appropriately 'tuned' channel decoder toprovide substantial coding gain when compared with the decoders that do not exploit it. Channelcoding schemes include convolutional codes, and iteratively decoded parallel concatenatedconvolutional 'turbo' codes.
基金This work was supported in part by National Natural Science Foundation of China(No.61671324)the Director’s Funding from Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM201712).
文摘Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61271423)
文摘Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.
基金supported by the National Key R&D Program of China(2018YFB2101300)the National Science Foundation of China(61973056)
文摘Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.
文摘This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes design- based and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data.We review studies on large-area forest surveys based on model-assisted, model- based, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters.
基金Electronic Development Fund of Ministry ofInformation Industry of China(No[2004]479)
文摘Based on the ideas of controlling relative quality and rearranging bitplanes, a new ROI coding method for JPEG2000 was proposed, which shifts and rearranges bitplanes in units of bitplane groups. It can code arbitrary shaped ROI without shape coding, and reserve almost arbitrary percent of background information. It also can control the relative quality of progressive decoded images. In addition, it is easy to be implemented and has low computational cost.