期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
Peer selecting model based on FCM for wireless distributed P2P files sharing systems
1
作者 李曦 纪红 郑瑞明 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期593-599,共7页
IIn order to improve the performance of wireless distributed peer-to-peer(P2P)files sharing systems,a general system architecture and a novel peer selecting model based on fuzzy cognitive maps(FCM)are proposed in this... IIn order to improve the performance of wireless distributed peer-to-peer(P2P)files sharing systems,a general system architecture and a novel peer selecting model based on fuzzy cognitive maps(FCM)are proposed in this paper.The new model provides an effective approach on choosing an optimal peer from several resource discovering results for the best file transfer.Compared with the traditional min-hops scheme that uses hops as the only selecting criterion,the proposed model uses FCM to investigate the complex relationships among various relative factors in wireless environments and gives an overall evaluation score on the candidate.It also has strong scalability for being independent of specified P2P resource discovering protocols.Furthermore,a complete implementation is explained in concrete modules.The simulation results show that the proposed model is effective and feasible compared with min-hops scheme,with the success transfer rate increased by at least 20% and transfer time improved as high as 34%. 展开更多
关键词 wireless P2P files sharing systems peer selecting model fuzzy cognitive maps
在线阅读 下载PDF
Gaussian mixture model clustering with completed likelihood minimum message length criterion 被引量:1
2
作者 曾洪 卢伟 宋爱国 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期43-47,共5页
An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the ... An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results. 展开更多
关键词 Gaussian mixture model non-Gaussian distribution model selection expectation-maximization algorithm completed likelihood minimum message length criterion
在线阅读 下载PDF
Depression recognition using functional connectivity based on dynamic causal model
3
作者 罗国平 刘刚 +2 位作者 赵竟 姚志剑 卢青 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期367-369,共3页
Dynamic casual modeling of functional magnetic resonance imaging(fMRI) signals is employed to explore critical emotional neurocircuitry under sad stimuli. The intrinsic model of emotional loops is built on the basis... Dynamic casual modeling of functional magnetic resonance imaging(fMRI) signals is employed to explore critical emotional neurocircuitry under sad stimuli. The intrinsic model of emotional loops is built on the basis of Papez's circuit and related prior knowledge, and then three modulatory connection models are established. In these models, stimuli are placed at different points, which represents they affect the neural activities between brain regions, and these activities are modulated in different ways. Then, the optimal model is selected by Bayesian model comparison. From group analysis, patients' intrinsic and modulatory connections from the anterior cingulate cortex (ACC) to the right inferior frontal gyrus (rlFG) are significantly higher than those of the control group. Then the functional connection parameters of the model are selected as classifier features. The classification accuracy rate from the support vector machine(SVM) classifier is 80.73%, which, to some extent, validates the effectiveness of the regional connectivity parameters for depression recognition and provides a new approach for the clinical diagnosis of depression. 展开更多
关键词 depression recognition FMRI dynamic causal model Bayesian model selection
在线阅读 下载PDF
Model Selection of Gas Turbine for Large Scale Gas-Fired Combined Cycle Power Plant
4
作者 何语平 《Electricity》 2003年第4期36-39,共4页
This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, pr... This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies. 展开更多
关键词 natural gas combined cycle power plant unit model selection
在线阅读 下载PDF
Comparison of six statistical approaches in the selection of appropriate fish growth models 被引量:7
5
作者 朱立新 李丽芳 梁振林 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第3期457-467,共11页
The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches inc... The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches include coefficient of determination(R2),adjusted coefficient of determination(adj.-R2),root mean squared error(RMSE),Akaike's information criterion(AIC),bias correction of AIC(AICc) and Bayesian information criterion(BIC).The simulation data were generated by five growth models with different numbers of parameters.Four sets of real data were taken from the literature.The parameters in each of the five growth models were estimated using the maximum likelihood method under the assumption of the additive error structure for the data.The best supported model by the data was identified using each of the six approaches.The results show that R2 and RMSE have the same properties and perform worst.The sample size has an effect on the performance of adj.-R2,AIC,AICc and BIC.Adj.-R2 does better in small samples than in large samples.AIC is not suitable to use in small samples and tends to select more complex model when the sample size becomes large.AICc and BIC have best performance in small and large sample cases,respectively.Use of AICc or BIC is recommended for selection of fish growth model according to the size of the length-at-age data. 展开更多
关键词 growth model model selection statistical approach Akalke's information criterion Bayesian information criterion
原文传递
Modeling of environmental influence in structural health assessment for reinforced concrete buildings 被引量:5
6
作者 Ka-Veng Yuen Sin-Chi Kuok 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期295-306,共12页
One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for stru... One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for structural damage since its square is proportional to structural stiffness. However,it has been demonstrated in various SHM projects that this indicator is substantially affected by fluctuating environmental conditions. In order to provide reliable and consistent information on the health status of the monitored structures,it is necessary to develop a method to filter this interference. This study attempts to model and quantify the environmental influence on the modal frequencies of reinforced concrete buildings. Daily structural response measurements of a twenty-two story reinforced concrete building were collected and analyzed over a one-year period. The Bayesian spectral density approach was utilized to identify the modal frequencies of this building and it was clearly seen that the temperature and humidity fluctuation induced notable variations. A mathematical model was developed to quantify the environmental effects and model complexity was taken into consideration. Based on a Timoshenko beam model,the full model class was constructed and other reduced-order model class candidates were obtained. Then,the Bayesian modal class selection approach was employed to select the one with the most suitable complexity. The proposed model successfully characterizes the environmental influence on the modal frequencies. Furthermore,the estimated uncertainty of the model parameters allows for assessment of the reliability of the prediction. This study not only improves the understanding about the monitored structure,but also establishes a systematic approach for reliable health assessment of reinforced concrete buildings. 展开更多
关键词 Bayesian inference model selection reinforced concrete building structural health monitoring temperature and humidity effects Timoshenko beam
在线阅读 下载PDF
MODEL SELECTION METHOD BASED ON MAXIMAL INFORMATION COEFFICIENT OF RESIDUALS 被引量:4
7
作者 谭秋衡 蒋杭进 丁义明 《Acta Mathematica Scientia》 SCIE CSCD 2014年第2期579-592,共14页
The traditional model selection criterions try to make a balance between fitted error and model complexity. Assumptions on the distribution of the response or the noise, which may be misspecified, should be made befor... The traditional model selection criterions try to make a balance between fitted error and model complexity. Assumptions on the distribution of the response or the noise, which may be misspecified, should be made before using the traditional ones. In this ar- ticle, we give a new model selection criterion, based on the assumption that noise term in the model is independent with explanatory variables, of minimizing the association strength between regression residuals and the response, with fewer assumptions. Maximal Information Coe^cient (MIC), a recently proposed dependence measure, captures a wide range of associ- ations, and gives almost the same score to different type of relationships with equal noise, so MIC is used to measure the association strength. Furthermore, partial maximal information coefficient (PMIC) is introduced to capture the association between two variables removing a third controlling random variable. In addition, the definition of general partial relationship is given. 展开更多
关键词 model Selection RESIDUAL maximal information coefficient partial maximalinformation coefficient
在线阅读 下载PDF
A general evaluation system for optimal selection performance of radar clutter model 被引量:3
8
作者 YANG Wei ZHANG Liang +2 位作者 YANG Liru ZHANG Wenpeng SHEN Qinmu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1520-1525,共6页
The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathemati... The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathematical simplification or empirical data fitting.However,the lack of standard model labels is a challenge in the optimal selection process.To solve this problem,a general three-level evaluation system for the model selection performance is proposed,including model selection accuracy index based on simulation data,fit goodness indexs based on the optimally selected model,and evaluation index based on the supporting performance to its third-party.The three-level evaluation system can more comprehensively and accurately describe the selection performance of the radar clutter model in different ways,and can be popularized and applied to the evaluation of other similar characterization model selection. 展开更多
关键词 radar clutter clutter characterization model model selection performance evaluation.
在线阅读 下载PDF
Nonhuman primate models of focal cerebral ischemia 被引量:18
9
作者 Jingjing Fan Yi Li +3 位作者 Xinyu Fu Lijuan Li Xiaoting Hao Shasha Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期321-328,共8页
Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested c... Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested clinically. Therefore, nonhuman primates were recommended as the ideal alternatives, owing to their similarities with the human cerebrovascular system, brain metabolism, grey to white matter ratio and even their rich behavioral repertoire. The present review is a thorough summary of ten methods that establish nonhuman primate models of focal cerebral ischemia; electrocoagulation, endothelin-1-induced occlusion, microvascular clip occlusion, autologous blood clot embolization, balloon inflation, microcatheter embolization, coil embolization, surgical suture embolization, suture, and photochemical induction methods. This review addresses the advantages and disadvantages of each method, as well as precautions for each model, compared nonhuman primates with rodents, different species of nonhuman primates and different modeling methods. Finally it discusses various factors that need to be considered when modelling and the method of evaluation after modelling. These are critical for understanding their respective strengths and weaknesses and underlie the selection of the optimum model. 展开更多
关键词 nerve regeneration stroke cerebral ischemia middle cerebral artery occlusion nonhuman primates model selection neural regeneration
暂未订购
Seismic attenuation relationship with homogeneous and heterogeneous prediction-error variance models 被引量:4
10
作者 He-Qing Mu Rong-Rong Xu Ka-Veng Yuen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期1-11,共11页
Peak ground acceleration(PGA) estimation is an important task in earthquake engineering practice.One of the most well-known models is the Boore-Joyner-Fumal formula,which estimates the PGA using the moment magnitude,t... Peak ground acceleration(PGA) estimation is an important task in earthquake engineering practice.One of the most well-known models is the Boore-Joyner-Fumal formula,which estimates the PGA using the moment magnitude,the site-to-fault distance and the site foundation properties.In the present study,the complexity for this formula and the homogeneity assumption for the prediction-error variance are investigated and an effi ciency-robustness balanced formula is proposed.For this purpose,a reduced-order Monte Carlo simulation algorithm for Bayesian model class selection is presented to obtain the most suitable predictive formula and prediction-error model for the seismic attenuation relationship.In this approach,each model class(a predictive formula with a prediction-error model) is evaluated according to its plausibility given the data.The one with the highest plausibility is robust since it possesses the optimal balance between the data fi tting capability and the sensitivity to noise.A database of strong ground motion records in the Tangshan region of China is obtained from the China Earthquake Data Center for the analysis.The optimal predictive formula is proposed based on this database.It is shown that the proposed formula with heterogeneous prediction-error variance is much simpler than the attenuation model suggested by Boore,Joyner and Fumal(1993). 展开更多
关键词 Bayesian inference Boore-Joyner-Fumal formula heterogeneity variance input-dependent variance model class selection peak ground acceleration seismic attenuation
在线阅读 下载PDF
An Optimization Algorithm Employing Multiple Metamodels and Optimizers 被引量:2
11
作者 Yoel Tenne 《International Journal of Automation and computing》 EI CSCD 2013年第3期227-241,共15页
Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges,... Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach. 展开更多
关键词 Expensive optimization problems computational intelligence adaptive algorithms METAmodelLING model selection.
原文传递
Model Selection in Estimation of Covariance Functions for Growth of Angora Goats 被引量:2
12
作者 LIU Wen-zhong ZHANG Yuan ZHOU Zhong-xiao 《Agricultural Sciences in China》 CAS CSCD 2010年第7期1041-1049,共9页
Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,differe... Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates. 展开更多
关键词 Angora goats GROWTH covariance function model selection random regression model
在线阅读 下载PDF
Selective Ensemble Extreme Learning Machine Modeling of Effluent Quality in Wastewater Treatment Plants 被引量:7
13
作者 Li-Jie Zhao 1,2 Tian-You Chai 2 De-Cheng Yuan 1 1 College of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110042,China 2 State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110189,China 《International Journal of Automation and computing》 EI 2012年第6期627-633,共7页
Real-time and reliable measurements of the effluent quality are essential to improve operating efficiency and reduce energy consumption for the wastewater treatment process.Due to the low accuracy and unstable perform... Real-time and reliable measurements of the effluent quality are essential to improve operating efficiency and reduce energy consumption for the wastewater treatment process.Due to the low accuracy and unstable performance of the traditional effluent quality measurements,we propose a selective ensemble extreme learning machine modeling method to enhance the effluent quality predictions.Extreme learning machine algorithm is inserted into a selective ensemble frame as the component model since it runs much faster and provides better generalization performance than other popular learning algorithms.Ensemble extreme learning machine models overcome variations in different trials of simulations for single model.Selective ensemble based on genetic algorithm is used to further exclude some bad components from all the available ensembles in order to reduce the computation complexity and improve the generalization performance.The proposed method is verified with the data from an industrial wastewater treatment plant,located in Shenyang,China.Experimental results show that the proposed method has relatively stronger generalization and higher accuracy than partial least square,neural network partial least square,single extreme learning machine and ensemble extreme learning machine model. 展开更多
关键词 Wastewater treatment process effluent quality prediction extreme learning machine selective ensemble model genetic algorithm.
原文传递
Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange--Influence of material properties,sorption mechanism and modeling 被引量:8
14
作者 Falk Schuricht Ekaterina S.Borovinskaya Wladimir Reschetilowski 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期160-170,共11页
Perfluorooctane sulfonate(PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the ad... Perfluorooctane sulfonate(PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force(LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient βs.The big difference in the initial mass transfer coefficient βs,0, when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate.But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range. 展开更多
关键词 PFOS Activated carbon Anion exchange resin Sorption kinetics modeling Sorption isotherm Selectivity of sorption
原文传递
Evaluation of numerical earthquake forecasting models 被引量:1
15
作者 Zhongliang Wu 《Earthquake Science》 2022年第4期293-296,共4页
Evaluation of numerical earthquake forecasting models needs to consider two issues of equal importance:the application scenario of the simulation,and the complexity of the model.Criterion of the evaluation-based model... Evaluation of numerical earthquake forecasting models needs to consider two issues of equal importance:the application scenario of the simulation,and the complexity of the model.Criterion of the evaluation-based model selection faces some interesting problems in need of discussion. 展开更多
关键词 numerical earthquake forecasting model selection Akaike information criteria(AIC)
在线阅读 下载PDF
Noise in Genotype Selection Model 被引量:1
16
作者 AIBao-Quan CHENWei +3 位作者 WANGXian-Ju LIUGuo-Tao WENDe-Hua LIULiang-Gang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第6期765-768,共4页
We study the steady state properties ofa genotype selection model in presence of correlated Gaussian whitenoise. The effect of the noise on the genotype selection model is discussed. It is found that correlated noise ... We study the steady state properties ofa genotype selection model in presence of correlated Gaussian whitenoise. The effect of the noise on the genotype selection model is discussed. It is found that correlated noise can breakthe balance of gene selection and induce the phase transition which can makes us select one type gene haploid from agene group. 展开更多
关键词 genotype selection model correlated noise Fokker-Planck equation
在线阅读 下载PDF
Selective ensemble modeling based on nonlinear frequency spectral feature extraction for predicting load parameter in ball mills 被引量:3
17
作者 汤健 柴天佑 +1 位作者 刘卓 余文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2020-2028,共9页
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ... Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones. 展开更多
关键词 Nonlinear latent feature extraction Kernel partial least squares Selective ensemble modeling Least squares support vector machines Material to ball volume ratio
在线阅读 下载PDF
Oil-Price Forecasting Based on Various Univariate Time-Series Models 被引量:3
18
作者 Gurudeo Anand Tularam Tareq Saeed 《American Journal of Operations Research》 2016年第3期226-235,共10页
Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate mode... Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate models are discussed: the exponential smoothing (ES), Holt-Winters (HW) and autoregressive intergrade moving average (ARIMA) models. To determine the best model, six different strategies were applied as selection criteria to quantify these models’ prediction accuracies. This comparison should help policy makers and industry marketing strategists select the best forecasting method in oil market. The three models were compared by applying them to the time series of regular oil prices for West Texas Intermediate (WTI) crude. The comparison indicated that the HW model performed better than the ES model for a prediction with a confidence interval of 95%. However, the ARIMA (2, 1, 2) model yielded the best results, leading us to conclude that this sophisticated and robust model outperformed other simple yet flexible models in oil market. 展开更多
关键词 Oil Price Univariate Time Series Exponential Smoothing Holt-Winters ARIMA models model Selection Criteria
在线阅读 下载PDF
Which Friction Factor Model Is the Best? A Comparative Analysis of Model Selection Criteria 被引量:1
19
作者 Ahmed H.Kamel Ali S.Shaqlaih Arslan Rozyyev 《Journal of Energy and Power Engineering》 2018年第3期158-168,共11页
The ongoing research for model choice and selection has generated a plethora of approaches. With such a wealth of methods, it can be difficult for a researcher to know what model selection approach is the proper w... The ongoing research for model choice and selection has generated a plethora of approaches. With such a wealth of methods, it can be difficult for a researcher to know what model selection approach is the proper way to proceed to select the appropriate model for prediction. The authors present an evaluation of various model selection criteria from decision-theoretic perspective using experimental data to define and recommend a criterion to select the best model. In this analysis, six of the most common selection criteria, nineteen friction factor correlations, and eight sets of experimental data are employed. The results show that while the use of the traditional correlation coefficient, R2 is inappropriate, root mean square error, RMSE can be used to rank models, but does not give much insight on their accuracy. Other criteria such as correlation ratio, mean absolute error, and standard deviation are also evaluated. The AIC (Akaike Information Criterion) has shown its superiority to other selection criteria. The authors propose AIC as an alternative to use when fitting experimental data or evaluating existing correlations. Indeed, the AIC method is an information theory based, theoretically sound and stable. The paper presents a detailed discussion of the model selection criteria, their pros and cons, and how they can be utilized to allow proper comparison of different models for the best model to be inferred based on sound mathematical theory. In conclusion, model selection is an interesting problem and an innovative strategy to help alleviate similar challenges faced by the professionals in the oil and gas industry is introduced. 展开更多
关键词 Friction factor information theory model selection turbulent flow straight tubing.
在线阅读 下载PDF
Model selection for SVM using mutative scale chaos optimization algorithm
20
作者 刘清坤 阙沛文 +1 位作者 费春国 宋寿朋 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期531-534,共4页
This paper proposes a new search strategy using mutative scale chaos optimization algorithm (MSCO) for model selection of support vector machine (SVM). It searches the parameter space of SVM with a very high effic... This paper proposes a new search strategy using mutative scale chaos optimization algorithm (MSCO) for model selection of support vector machine (SVM). It searches the parameter space of SVM with a very high efficiency and finds the optimum parameter setting for a practical classification problem with very low time cost. To demonstrate the performance of the proposed method it is applied to model selection of SVM in ultrasonic flaw classification and compared with grid search for model selection. Experimental results show that MSCO is a very powerful tool for model selection of SVM, and outperforms grid search in search speed and precision in ultrasonic flaw classification. 展开更多
关键词 model selection support vector machine (SVM) mutative scale chaos optimization (MSCO) ultrasonic testing (UT) non-destructive testing (NDT).
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部