Abstract Accurate simulation of seismic wave propaga- tion in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments wi...Abstract Accurate simulation of seismic wave propaga- tion in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic model- ing, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or ref- erence methods, or via direct comparison with real data acquired in situ. Such approaches have limitations,especially if the propagation occurs in a complex envi- ronment with strong-contrast reflectors and surface irreg- ularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experi- ments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.展开更多
Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked...Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir.展开更多
An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variatio...An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variation with offset(AVO) responses,which can define underground conditions. In the present paper we investigate walkaway vertical seismic profile(VSP) AVO response to CO_2 injection at the Ketzin site,the first European onshore CO_2 sequestration pilot study dealing with research on geological storage of CO_2.First,we performed rock physics analysis to evaluate the effect of injected CO_2 on seismic velocity using the Biot-Gassmann equation.On the basis of this model,the seismic response for different CO_2 injection saturation was studied using ray tracing modeling.We then created synthetic walkaway VSP data,which we then processed.In contrast,synthetic seismic traces were created from borehole data.Finally,we found that the amplitude of CO_2 injected sand layer with different gas saturations were increased with the offset when compared with the original brine target layer.This is the typical classⅢAVO anomaly for gas sand layer.The AVO responses matched the synthetic seismic traces very well.Therefore,walkaway VSP AVO response can monitor CO_2 distribution in the Ketzin area.展开更多
According to revised Cailikefu’s rolling shear force formula,motion path equation of spatial seven-bar path is built,and mechanical model,with such new structural features as negative offset,is thus successfully esta...According to revised Cailikefu’s rolling shear force formula,motion path equation of spatial seven-bar path is built,and mechanical model,with such new structural features as negative offset,is thus successfully established for 2 800 mm heavy shear of some Iron&Steel Company. Shear force and bar force of steel plate,before and after adoption of negative offset structure,are analyzed,as well as horizontal force component of mechanism that influences pure rolling shear and back-wall push force that keeps blade clearance. The discovery is that back-wall push force could be kept large enough at rolling start-up (i.e. the time that the maximum rolling shear produces),meanwhile,back-wall push force is the most approximate to side forces with adoption of 60 mm-100 mm offset. Theoretical results and on-site shear quality both indicate that new structural features such as negative offset plays an important role in ensuring pure rolling shear and keeping blade clearance constant,which provide an effective means to improve quality of steel plate.展开更多
The Mw 9.0 Tohoku-Oki earthquake that hit the mainland Japan on 11 th March, 2011 had resulted a devastating Tsunami due to an active thrusting between the Pacific and the North American Plates. Static and kinematic o...The Mw 9.0 Tohoku-Oki earthquake that hit the mainland Japan on 11 th March, 2011 had resulted a devastating Tsunami due to an active thrusting between the Pacific and the North American Plates. Static and kinematic offsets at the offshore epicentre of the Mw 9.0 event remain unanswered and being investigated along with their near and far field limiting distances from the epicentre. Accordingly, offset measurements from 60 continuously operating IGS and GEONET GNSS stations were radially classified from the epicentre and interpreted with analytical models to find their linear offset decay rates. Co-and post-seismic static positional anomaly offsets of sixty days show almost all near field stations had strong or appreciable eastward or south eastward static shifts. Near stations(<250 km) showed both kinematic and static offsets. GEONET station ’0175’ showed maximum resultant static offset of-4.5 m, which diminishes approximately 1-2 cm at far sites like SMST and AIRA. Characteristic decay duration(’b’) of the mean kinematic co-seismic shift(’a’)of near field stations was 17.28 s during earthquake hours with an EW component shift >1.5 m. Spatial models of projected N-S static and kinematic offsets show their asymmetrical distributions around the epicentre with maximum model offset of-1.84 m displaced towards south at-45 km north of the epicentre. The Tohoku-Oki earthquake produced a resultant kinematic offset of-10.2 m towards East at its offshore epicentre;while the estimated near field static offset is ~9.82 m. However, both estimates are bigger than double the resultant offset measured value(~4.3 m) in the Japanese mainland using GPS. The difference in the kinematic and static near field offsets highlight that the near surface had elastic or in-elastic kinematic strain dissipation as against the lithospheric level viscoelastic static response, which resulted rapid kinematic strain release(1.12 cm/km)within the limiting radius of ~220 km from the Tohoku-Oki epicentre.展开更多
On the base of studying the modeling technique of man-nequin and garment curved surface with non-uniform rational B-spline(NURBS),several methods of mannequin data pickup on 2D screen are proposed.A garment style crea...On the base of studying the modeling technique of man-nequin and garment curved surface with non-uniform rational B-spline(NURBS),several methods of mannequin data pickup on 2D screen are proposed.A garment style creating method,which gets the key points for garment style modeling by drawing panel contour aroundthe mannequin on the screen and calculating the offset value between the body and the garment,is presented.Then 3D garment styles can be easily modeled with the key points and interactively modified.展开更多
According to the revised Cailikefu's rolling shear force formula, motion path equation of spatial seven-bar path was built, and a mechanical model, with the new structural feature of negative offset, was thus success...According to the revised Cailikefu's rolling shear force formula, motion path equation of spatial seven-bar path was built, and a mechanical model, with the new structural feature of negative offset, was thus successfully established for 2 800 mm heavy shear of some iron and steel company. Shear and bar forces of steel plate, before and after the adoption of negative offset structure, were analyzed, as well as horizontal force component of mechanism that influences pure rolling shear and back-wall push force that keeps blade clearance. It was found that the back-wall push force keeps large even at the time that the maximum rolling shear was obtained; meanwhile, back-wall push force is the most approximate to side forces when 60--100 mm of offset was adopted. Both theoretical results and onsite shear quality show that the negative offset plays an important role in ensuring the stability of pure rolling shear and keeping blade clearance constant.展开更多
Recent high-resolution deep seismic reflection profile across the Kunlun fault in northeastern Tibet shows clearly that the Moho is cut off by a complex thrust fault system. Moho offset is a general phenomenon, but li...Recent high-resolution deep seismic reflection profile across the Kunlun fault in northeastern Tibet shows clearly that the Moho is cut off by a complex thrust fault system. Moho offset is a general phenomenon, but little is known about the dynamic mechanism. In this study, contact models with Maxwell materials are used to simulate the mechanical process of Moho offset induced by the aseismic slip of deeply buried faults. Based on the seismic reflection data, we project a single fault model and a complex fault system model with two faults inter- secting. The deformations of the Moho, the aseismic slips, and contact stresses on faults in different models are discussed in detail. Results show that the Moho offset might be produced by aseismic slip of deeply buried faults, and the magnitude is influenced by the friction coefficient of faults and the viscosity of the lower crust. The maximum slip occurs near the Moho on the single fault or at the crossing point of two intersecting faults system. Stress concentrates mainly on the Moho, the deep end of faults, or the crossing point. This study will throw light on understanding the mechanism of Moho offset and aseismic slip of deeply buried faults. The results of complex fault system with two faults intersecting are also useful to understand the shallow intersecting faults that may cause earthquakes.展开更多
基金the INSIS Institute of the French CNRS,Aix-Marseille Universitythe Carnot Star Institute,the VISTA Projectthe Norwegian Research Council through the ROSE Project for financial support
文摘Abstract Accurate simulation of seismic wave propaga- tion in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic model- ing, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or ref- erence methods, or via direct comparison with real data acquired in situ. Such approaches have limitations,especially if the propagation occurs in a complex envi- ronment with strong-contrast reflectors and surface irreg- ularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experi- ments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.
文摘Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir.
基金The European Commission,German Federal Ministry of Education and Research,German Federal Ministry of Economics and Technology as well as Research Institute and Industry are gratefully acknowledged for funding and supporting CO2 Storage by Injection into a Natural Storage Site CO2SINK(Project No.502599)
文摘An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variation with offset(AVO) responses,which can define underground conditions. In the present paper we investigate walkaway vertical seismic profile(VSP) AVO response to CO_2 injection at the Ketzin site,the first European onshore CO_2 sequestration pilot study dealing with research on geological storage of CO_2.First,we performed rock physics analysis to evaluate the effect of injected CO_2 on seismic velocity using the Biot-Gassmann equation.On the basis of this model,the seismic response for different CO_2 injection saturation was studied using ray tracing modeling.We then created synthetic walkaway VSP data,which we then processed.In contrast,synthetic seismic traces were created from borehole data.Finally,we found that the amplitude of CO_2 injected sand layer with different gas saturations were increased with the offset when compared with the original brine target layer.This is the typical classⅢAVO anomaly for gas sand layer.The AVO responses matched the synthetic seismic traces very well.Therefore,walkaway VSP AVO response can monitor CO_2 distribution in the Ketzin area.
基金Supported by the National tenth-five Key Technologies R&D Programme (ZZ01-13A-03-03-04) .
文摘According to revised Cailikefu’s rolling shear force formula,motion path equation of spatial seven-bar path is built,and mechanical model,with such new structural features as negative offset,is thus successfully established for 2 800 mm heavy shear of some Iron&Steel Company. Shear force and bar force of steel plate,before and after adoption of negative offset structure,are analyzed,as well as horizontal force component of mechanism that influences pure rolling shear and back-wall push force that keeps blade clearance. The discovery is that back-wall push force could be kept large enough at rolling start-up (i.e. the time that the maximum rolling shear produces),meanwhile,back-wall push force is the most approximate to side forces with adoption of 60 mm-100 mm offset. Theoretical results and on-site shear quality both indicate that new structural features such as negative offset plays an important role in ensuring pure rolling shear and keeping blade clearance constant,which provide an effective means to improve quality of steel plate.
文摘The Mw 9.0 Tohoku-Oki earthquake that hit the mainland Japan on 11 th March, 2011 had resulted a devastating Tsunami due to an active thrusting between the Pacific and the North American Plates. Static and kinematic offsets at the offshore epicentre of the Mw 9.0 event remain unanswered and being investigated along with their near and far field limiting distances from the epicentre. Accordingly, offset measurements from 60 continuously operating IGS and GEONET GNSS stations were radially classified from the epicentre and interpreted with analytical models to find their linear offset decay rates. Co-and post-seismic static positional anomaly offsets of sixty days show almost all near field stations had strong or appreciable eastward or south eastward static shifts. Near stations(<250 km) showed both kinematic and static offsets. GEONET station ’0175’ showed maximum resultant static offset of-4.5 m, which diminishes approximately 1-2 cm at far sites like SMST and AIRA. Characteristic decay duration(’b’) of the mean kinematic co-seismic shift(’a’)of near field stations was 17.28 s during earthquake hours with an EW component shift >1.5 m. Spatial models of projected N-S static and kinematic offsets show their asymmetrical distributions around the epicentre with maximum model offset of-1.84 m displaced towards south at-45 km north of the epicentre. The Tohoku-Oki earthquake produced a resultant kinematic offset of-10.2 m towards East at its offshore epicentre;while the estimated near field static offset is ~9.82 m. However, both estimates are bigger than double the resultant offset measured value(~4.3 m) in the Japanese mainland using GPS. The difference in the kinematic and static near field offsets highlight that the near surface had elastic or in-elastic kinematic strain dissipation as against the lithospheric level viscoelastic static response, which resulted rapid kinematic strain release(1.12 cm/km)within the limiting radius of ~220 km from the Tohoku-Oki epicentre.
文摘On the base of studying the modeling technique of man-nequin and garment curved surface with non-uniform rational B-spline(NURBS),several methods of mannequin data pickup on 2D screen are proposed.A garment style creating method,which gets the key points for garment style modeling by drawing panel contour aroundthe mannequin on the screen and calculating the offset value between the body and the garment,is presented.Then 3D garment styles can be easily modeled with the key points and interactively modified.
基金Item Sponsored by National Natural Science Foundation of China (50575155)National Tenth-Five Key Technologies Research and Development Program(ZZ01-13A-03-03-04)Shanxi Provincial Key Technologies Research and Development Program of China (2006031174)
文摘According to the revised Cailikefu's rolling shear force formula, motion path equation of spatial seven-bar path was built, and a mechanical model, with the new structural feature of negative offset, was thus successfully established for 2 800 mm heavy shear of some iron and steel company. Shear and bar forces of steel plate, before and after the adoption of negative offset structure, were analyzed, as well as horizontal force component of mechanism that influences pure rolling shear and back-wall push force that keeps blade clearance. It was found that the back-wall push force keeps large even at the time that the maximum rolling shear was obtained; meanwhile, back-wall push force is the most approximate to side forces when 60--100 mm of offset was adopted. Both theoretical results and onsite shear quality show that the negative offset plays an important role in ensuring the stability of pure rolling shear and keeping blade clearance constant.
基金supported by SinoProbe (Grant 08-01)the National Natural Science Foundation of China (Grant Nos.41174035 and 41130316)+1 种基金the National High Technology Research and Development Program of China (863 Program) (Grant No.2009AA093401-05)the Major State Basic Research Development Program of China (973 Program) (Grant No.2012CB417301)
文摘Recent high-resolution deep seismic reflection profile across the Kunlun fault in northeastern Tibet shows clearly that the Moho is cut off by a complex thrust fault system. Moho offset is a general phenomenon, but little is known about the dynamic mechanism. In this study, contact models with Maxwell materials are used to simulate the mechanical process of Moho offset induced by the aseismic slip of deeply buried faults. Based on the seismic reflection data, we project a single fault model and a complex fault system model with two faults inter- secting. The deformations of the Moho, the aseismic slips, and contact stresses on faults in different models are discussed in detail. Results show that the Moho offset might be produced by aseismic slip of deeply buried faults, and the magnitude is influenced by the friction coefficient of faults and the viscosity of the lower crust. The maximum slip occurs near the Moho on the single fault or at the crossing point of two intersecting faults system. Stress concentrates mainly on the Moho, the deep end of faults, or the crossing point. This study will throw light on understanding the mechanism of Moho offset and aseismic slip of deeply buried faults. The results of complex fault system with two faults intersecting are also useful to understand the shallow intersecting faults that may cause earthquakes.