To achieve the purpose of applying design patterns which are various in ldnd and constant in changing in MDA from idea and application, one way is used to solve the problem of pattern disappearance which occurs at the...To achieve the purpose of applying design patterns which are various in ldnd and constant in changing in MDA from idea and application, one way is used to solve the problem of pattern disappearance which occurs at the process of pattern instantiation, to guarantee the independence of patterns, and at the same time, to apply this process to multiple design pattems. To solve these two problons, the modeling method of design pattern traits based on meta-models is adopted, i.e., to divide the basic operations into atoms in the metamodel tier and then combine the atoms to complete design pattem units meta-models withtout business logic. After one process of conversion, the purpose of making up various pattem traits meta-model and dividing business logic and pattern logic is achieved.展开更多
The objective of this research is to show a new methodology for modeling phenomena present in complex economic systems. The case study we analyzed is the adoption of open organization model among firms operating in a ...The objective of this research is to show a new methodology for modeling phenomena present in complex economic systems. The case study we analyzed is the adoption of open organization model among firms operating in a particular industry. A firm with an open system model creates and captures value taking advantage not only from the internal resource but also from external. The organization could approach to open model acquisition using different focus: external focus namely looking out of its boundary, acting and reacting to competitor innovation, costumers' changing, demand growth, or internal focus remaining inside its boundary improving its best capabilities ignoring what happened outside (Vagnani, Moran, & Simoni, 2010). The actors involved are firms, customers and suppliers linked together through a business to business model. The methodology is based on an Object-Oriented Analysis Field Model that allows to intuitively describe systems characterized by a large number of objects that interact, as in this case of a system composed by different organizational entities. The system simulation allows to analyze how the actors influence the acquisition and diffusion of the open organization model. This approach permits the generation of different classes of objects to represent all actors involved in the evolution of the system and to define the dynamics that determine their interaction. The solution of the model can be approximated using the Mean-Field analysis technique (Kurtz, 1978), following the results proposed in Bobbio, Gribaudo, and Yelek (2008). A qualitative result is illustrated in order to show the applicability of the proposed methodology and to emphasize its relevant features: flexible modeling approach, capacity of solving complex systems and output management facilities. The presented model is comprehensive and its scope is wide; it could be used to study the behavior of enterprises changing model in many different scenarios and situations. In future works quantitative results will be given, and different situations will be analyzed.展开更多
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio...Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.展开更多
Yeast-based models have become a powerful platform in pharmaceutical research,offering significant potential for producing complex drugs,vaccines,and therapeutic agents.While many current drugs were discovered before ...Yeast-based models have become a powerful platform in pharmaceutical research,offering significant potential for producing complex drugs,vaccines,and therapeutic agents.While many current drugs were discovered before fully understanding their molecular mechanisms,yeast systems now provide valuable insights for drug discovery and personalized medicine.Recent advancements in genetic engineering,metabolic engineering,and synthetic biology have improved the efficiency and scalability of yeast-based production systems,enabling more sustainable and cost-effective manufacturing processes.This paper reviews the latest developments in yeast-based technologies,focusing on their use as model organisms to study disease mechanisms,identify drug targets,and develop novel therapies.We highlight key platforms such as the yeast two-hybrid system,surface display technologies,and optimized expression systems.Additionally,we explore the future integration of yeast engineering with artificial intelligence(AI),machine learning(ML),and advanced genome editing technologies like CRISPR/Cas9,which are expected to accelerate drug discovery and enable personalized therapies.Furthermore,yeast-based systems are increasingly employed in largescale drug production,vaccine development,and therapeutic protein expression,offering promising applications in clinical and industrial settings.This paper discusses the practical implications of these systems and their potential to revolutionize drug development,paving the way for safer,more effective therapies.展开更多
With the rapid development of digital earth,smart city,and digital twin technology,the demands of three-dimensional model data’s application is getting higher and higher.These data tend to be multi-objectification,mu...With the rapid development of digital earth,smart city,and digital twin technology,the demands of three-dimensional model data’s application is getting higher and higher.These data tend to be multi-objectification,multi-type,multi-scale,complex spatial relationship,and large amount,which brings great challenges to the efficient organization of them.This paper mainly studies the organization of three-dimensional model data,and the main contributions are as follows:1)A integer coding method of three dimensional multi-scale grid is proposed,which can reduce the four-dimensional(spatial dimension and scale dimension)space into one-dimensional,and has better space and scale clustering characteristics by comparing with various types of grid coding.2)The binary algebra calculation method is proposed to realize the basic spatial relationship calculation of three-dimensional grid,which has higher spatial relationship computing ability than 3D-Geohash method;3)The multi-scale integer coding method is applied to the data organization of three-dimensional city model,and the experiment results show that:it is more efficient and stable than the threedimensional R-tree index and Geohash coding method in the establishment of index and the query of three dimensional space.展开更多
In this paper, the studies show that the framework of the original organizational models based on the philosophy view is constructed. The driving forces are also expatiated in the paper. Matching with the time and spa...In this paper, the studies show that the framework of the original organizational models based on the philosophy view is constructed. The driving forces are also expatiated in the paper. Matching with the time and space in which the organization exists, fitted with the extra environment, making the organization take effect and properly controlling the important potential factors for the organizations further are the four driving forces development. The supporting pillars are cooperation in the competition, communication, negotiation and proper equal culture environment. At last, the researches point out that organization is a process, while organizational model is only a tool for us to realize the world.展开更多
This paper discusses an organizational model to be used for both conventional and virtual organizations. The model deals with variable relationships within an organization and provides a framework for overall organiza...This paper discusses an organizational model to be used for both conventional and virtual organizations. The model deals with variable relationships within an organization and provides a framework for overall organizational design that may include relationship among different design variables and external relationship with environment. Based on the researches of virtual organization, this paper also illustrates the new model of organization in the real world such as Beijing 2008 Olympic games and Dongfeng Automobile group.展开更多
Model organisms have long been important in biology and medicine due to their specific characteristics. Amphibians, especially Xenopus, play key roles in answering fundamental questions on developmental biology, regen...Model organisms have long been important in biology and medicine due to their specific characteristics. Amphibians, especially Xenopus, play key roles in answering fundamental questions on developmental biology, regeneration, genetics, and toxicology due to their large and abundant eggs, as well as their versatile embryos, which can be readily manipulated and developed in vivo. Furthermore, amphibians have also proven to be of considerable benefit in human disease research due to their conserved cellular developmental and genomic organization. This review gives a brief introduction on the progress and limitations of these animal models in biology and human disease research, and discusses the potential and challenge of Microhyla fissipes as a new model organism.展开更多
The ascidian Ciona intestinalis is a model organism of developmental and evolutionary biology and may provide orucial clues concerning two fundamental matters, namely, how chordates originated from the putative deuter...The ascidian Ciona intestinalis is a model organism of developmental and evolutionary biology and may provide orucial clues concerning two fundamental matters, namely, how chordates originated from the putative deuterostome ancestor and how advanced chordates originated from the simplest chordates. In this paper, a whole-life-span culture of C. intestinalis was conducted. Fed with the diet combination of dry Spirulina, egg yolk, Dicrateria sp., edible yeast and weaning diet for shrimp, C. intestinalis grew up to average 59 mm and matured after 60 d cultivation. This culture process could be repeated using the artificially cultured mature ascidians as material. When the fertilized eggs were maintained under 10, 15, 20, 25 ℃, they hatched within 30 h, 22 h, 16 h and 12 h 50 min respectively experiencing cleavage, blastulation, gastrulation, neurulation, tailbud stage and tadpole stage, The tadpole larvae were characterized as typical but simplified chordates because of their dorsal nerve cord, notochord and primordial brain. After 8-24 h freely swimming, the tadpole larvae settled on the substrates and metamorphosized within 1-2 d into filter feeding sessile juvenile ascidians. In addition, unfertilized eggs were successfully dechorionated in filtered seawater containing 1% Tripsin, 0.25% EDTA at pH of 10.5 within 40 min. After fertilization, the dechorionated eggs developed well and hatched at normal hatching rate. In conclusion, this paper presented feasible methodology for rearing the tadpole larvae of C. intestinalis into sexual maturity under controlled conditions and detailed observations on the embryogenesis of the laboratory cultured ascidians, which will facilitate developmental and genetic research using this model system.展开更多
Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology. Invertebrates like Hydra and planarians exhibit amazing feats of regeneration, in whic...Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology. Invertebrates like Hydra and planarians exhibit amazing feats of regeneration, in which an entire organism can be restored t^om minute body segments. Vertebrates like teleost fish and amphibians can also regrow large sections of the body. While this regenerative capacity is greatly attenuated in mammals, there are portions of major organs that remain regenerative. Regardless of the extent, there are common basic strategies to regeneration, including activation of adult stem cells and proliferation of differentiated cells. Here, we discuss the cellular features and molecular mechanisms that are involved in regeneration in different model organisms, including 14ydra, planarians, zebrafish and newts as well as in several mammalian organs.展开更多
A better understanding of genetic bases of growth regulation is essential for bivalve breeding,which is helpful to improve the yield of the commercially important bivalves.While previous studies have identified some c...A better understanding of genetic bases of growth regulation is essential for bivalve breeding,which is helpful to improve the yield of the commercially important bivalves.While previous studies have identified some candidate genes accounting for variation in growth-related traits through genotype-phenotype association analyses,seldom of them have verified the functions of these putative,growth-related genes beyond the genomic level due to the difficulty of culturing commercial bivalves under laboratory conditions.Fortunately,dwarf surf clam Mulinia lateralis can serve as a model organism for studying marine bivalves given its short generation time,the feasibility of being grown under experimental conditions and the availability of genetic and biological information.Using dwarf surf clam as a model bivalve,we characterize E2F3,a gene that has been found to account for variation in growth in scallops by a previous genome-wide association study,and verify its function in growth regulation through RNA interference(RNAi)experiments.For the first time,E2F3 in dwarf surf clam,which is termed as MulE2F3,is characterized.The results reveal that dwarf surf clams with MulE2F3 knocked down exhibit a reduction in both shell size and soft-tissue weight,indicating the functions of MulE2F3 in positively regulating bivalve growth.More importantly,we demonstrate how dwarf surf clam can be used as a model organism to investigate gene functions in commercial bivalves,shedding light on genetic causes for variation in growth to enhance the efficiency of bivalve farming.展开更多
A low-viscosity emulsion of crude oil in water can be believed to be the bulk of a flow regime in a pipeline.To differentiate which crude oil would and which would not counter the blockage of flow due to gas hydrate f...A low-viscosity emulsion of crude oil in water can be believed to be the bulk of a flow regime in a pipeline.To differentiate which crude oil would and which would not counter the blockage of flow due to gas hydrate formation in flow channels,varying amount of crude oil in water emulsion without any other extraneous additives has undergone methane gas hydrate formation in an autoclave cell.Crude oil was able to thermodynamically inhibit the gas hydrate formation as observed from its hydrate stability zone.The normalized rate of hydrate formation in the emulsion has been calculated from an illustrative chemical affinity model,which showed a decrease in the methane consumption(decreased normalized rate constant) with an increase in the oil content in the emulsion.Fourier transform infrared spectroscopy(FTIR) of the emulsion and characteristic properties of the crude oil have been used to find the chemical component that could be pivotal in selfinhibitory characteristic of the crude oil collected from Ankleshwar,India,against a situation of clogged flow due to formation of gas hydrate and establish flow assurance.展开更多
A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications.Conditional expression allows for (ir)reversible switching of genes on or off,with...A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications.Conditional expression allows for (ir)reversible switching of genes on or off,with the potential of spatial and/or temporal control.This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis,providing tools to answer a wider array of research questions across biological disciplines.Spatial and/or temporal control are granted primarily by(combinations of) specific promoters,temperature regimens,compound addition,or illumination.The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales,using organisms amenable to easy genetic manipulation.Recent years witnessed an exciting expansion and optimization of such tools,of which we provide a comprehensive overview and discussion regarding their use in invertebrates.The mechanism,applicability,benefits,and drawbacks of each of the systems,as well as further developments to be expected in the foreseeable future,are highlighted.展开更多
The adsorb model of formic acid on NaX derived from TPD was discussed. It was showed that the adsorb sites were various exposed framework O2- centers bearing different basic intensity and spatial resistance. The h-pea...The adsorb model of formic acid on NaX derived from TPD was discussed. It was showed that the adsorb sites were various exposed framework O2- centers bearing different basic intensity and spatial resistance. The h-peak was attributed to O2- near S-III in supercage and l-peak to O2- near S-II in beta-cage of faujusite zeolite. The model can explain the experimental results. Meanwhile, a relative standard of basic intensity based on TPD of formic acid was founded.展开更多
Nowadays, many countries and regions use the human resources development as the major approach in holding the initiative in competition. The Baotou Rare Earth High-tech Area implements the strategies for revitalizing ...Nowadays, many countries and regions use the human resources development as the major approach in holding the initiative in competition. The Baotou Rare Earth High-tech Area implements the strategies for revitalizing the area through establishing science and education learning organization and developing the entire learning in Management Committee. In accordance with the fundamental of mathematics "The arithmetical mean is equal to or larger than its geometric mean to any positive real number", it submits "the theoretical model of proportional development advantage of the same element in the same level" in order to solve "the problem that a few people behind in the department block the development of the High-tech Area", realize every member's common progress and each department's proportional development, and finally make the effect of Rare Earth High-tech maximum by strengthening team cooperation and producing a multiplier effect.展开更多
The technology of three-dimensional(3D)printing emerged in the late 1970s and has since undergone considerable development to find numerous applications in mechanical engineering,industrial design,and biomedicine.In b...The technology of three-dimensional(3D)printing emerged in the late 1970s and has since undergone considerable development to find numerous applications in mechanical engineering,industrial design,and biomedicine.In biomedical science,several studies have initially found that 3D printing technology can play an important role in the treatment of diseases in hepatopancreatobiliary surgery.For example,3D printing technology has been applied to create detailed anatomical models of disease organs for preoperative personalized surgical strategies,surgical simulation,intraoperative navigation,medical training,and patient education.Moreover,cancer models have been created using 3D printing technology for the research and selection of chemotherapy drugs.With the aim to clarify the development and application of 3D printing technology in hepatopancreatobiliary surgery,we introduce seven common types of 3D printing technology and review the status of research and application of 3D printing technology in the field of hepatopancreatobiliary surgery.展开更多
The increasing global concern regarding plastic pollution has prompted the research into the consequences of microplastics(MPs)on aquatic ecosystems.Fairy shrimp Branchinella kugenumaensis are freshwater planktonic or...The increasing global concern regarding plastic pollution has prompted the research into the consequences of microplastics(MPs)on aquatic ecosystems.Fairy shrimp Branchinella kugenumaensis are freshwater planktonic organisms that have existed for 250 million years.This study aimed to uncover the harmful effects of MPs,with a particular focus on their size variations(0.1,1,and 5μm),on the fairy shrimp.We focused on how MPs could significantly affect the survival and growth of fairy shrimp.Notably,larger MPs,especially those measuring 5μm,caused higher mortality rates and hindered the growth compared to smaller ones.The impact of MPs continued even subsequent to depuration in clean water.The accumulation of MPs within the intestines of fairy shrimp resulted in intestinal blockages,disrupted excretory functions,and harmed intestinal epithelial cells.Examinations at the histological,cellular,and molecular levels showed that exposure to MPs triggered necroptosis in intestinal cells,accompanied by alterations in pathways related to transcription,translation,digestion,energy metabolism,and neurological functions.Furthermore,the effects of MPs on gene expression and pathways varied based on particle size,with larger MPs having a more significant effect and causing a strong response in xenobiotic biodegradation and metabolism pathways.We suggest that the increasing severity of MPs pollution could pose a significant threat to the survival of fairy shrimp.This study provided vital insights into the complex relationship between microplastics and aquatic organisms,and highlighted the urgent need to address the potential devastating impact of plastic pollution on freshwater ecosystems.Additionally,due to their rapid growth,strong reproductive capacity,sensitivity,and ease of cultivation,fairy shrimp hold the potential candidate to serve as a model organism for studying the effects of MPs and other pollutants on freshwater ecosystems.展开更多
Ribonucleases (RNases), essential for RNA metabolism, are implicated in human diseases, including neurodevelopmental, developmental, hematopoietic and other dysfunctions through mutations that disrupt their enzymatic ...Ribonucleases (RNases), essential for RNA metabolism, are implicated in human diseases, including neurodevelopmental, developmental, hematopoietic and other dysfunctions through mutations that disrupt their enzymatic functions. Exploring RNase mutations across organisms offers insights into Mendelian diseases, facilitating molecular dissection of pathological pathways and therapeutic development. By employing model organisms, our analysis underscores the evolutionary conservation of RNase genes, facilitating deeper insights into disease mechanisms. These models are vital for uncovering rare molecular dysfunctions and potential therapeutic targets, demonstrating the effectiveness of integrated research approaches in addressing complex genetic disorders. Drawing from phylogenetic analyses, literature survey, and databases documenting the effects of human disease-causing mutations, the review highlights the significance and advantages of employing model organisms to study specific Mendelian disorders.展开更多
Liver is one of the largest internal organs in the body and its importance for metabolism, detoxification and homeostasis has been well established. In this review, we summarized recent progresses in studying liver in...Liver is one of the largest internal organs in the body and its importance for metabolism, detoxification and homeostasis has been well established. In this review, we summarized recent progresses in studying liver initiation and development during embryogenesis using zebrafish as a model system. We mainly focused on topics related to the specification of hepatoblasts from endoderm, the formation and growth of liver bud, the differentiation of hepatocytes and bile duct cells from hepatoblasts, and finally the role of mesodermal signals in controlling liver development in zebrafish.展开更多
At present, robot embedded systems have some common problems such as closure and poor dynamic evolution. Aiming at resolving this situation, our paper focuses on improvements to the robot embedded system and sets up a...At present, robot embedded systems have some common problems such as closure and poor dynamic evolution. Aiming at resolving this situation, our paper focuses on improvements to the robot embedded system and sets up a new robot system architecture, and we propose a syncretic mechanism of a robot and SoftMan (SM). In the syncretic system, the structural organization of the SoftMan group and its modes are particularly important in establishing the task coordination mechanism. This paper, therefore, proposes a coordination organization model based on the SoftMan group, and studies in detail the process of task allocation for resource contention, which facilitates a rational allocation of system resources. During our research, we introduced Resource Requirement Length Algorithm (RRLA) to calculate the resource requirements of the task and a resource conformity degree allocation algorithm of Resource Conformity Degree Algorithm (RCDA) for resource contention. Finally, a comparative evaluation of RCDA with five other frequently used task allocation algorithms shows that RCDA has higher success and accuracy rates with good stability and reliability.展开更多
文摘To achieve the purpose of applying design patterns which are various in ldnd and constant in changing in MDA from idea and application, one way is used to solve the problem of pattern disappearance which occurs at the process of pattern instantiation, to guarantee the independence of patterns, and at the same time, to apply this process to multiple design pattems. To solve these two problons, the modeling method of design pattern traits based on meta-models is adopted, i.e., to divide the basic operations into atoms in the metamodel tier and then combine the atoms to complete design pattem units meta-models withtout business logic. After one process of conversion, the purpose of making up various pattem traits meta-model and dividing business logic and pattern logic is achieved.
文摘The objective of this research is to show a new methodology for modeling phenomena present in complex economic systems. The case study we analyzed is the adoption of open organization model among firms operating in a particular industry. A firm with an open system model creates and captures value taking advantage not only from the internal resource but also from external. The organization could approach to open model acquisition using different focus: external focus namely looking out of its boundary, acting and reacting to competitor innovation, costumers' changing, demand growth, or internal focus remaining inside its boundary improving its best capabilities ignoring what happened outside (Vagnani, Moran, & Simoni, 2010). The actors involved are firms, customers and suppliers linked together through a business to business model. The methodology is based on an Object-Oriented Analysis Field Model that allows to intuitively describe systems characterized by a large number of objects that interact, as in this case of a system composed by different organizational entities. The system simulation allows to analyze how the actors influence the acquisition and diffusion of the open organization model. This approach permits the generation of different classes of objects to represent all actors involved in the evolution of the system and to define the dynamics that determine their interaction. The solution of the model can be approximated using the Mean-Field analysis technique (Kurtz, 1978), following the results proposed in Bobbio, Gribaudo, and Yelek (2008). A qualitative result is illustrated in order to show the applicability of the proposed methodology and to emphasize its relevant features: flexible modeling approach, capacity of solving complex systems and output management facilities. The presented model is comprehensive and its scope is wide; it could be used to study the behavior of enterprises changing model in many different scenarios and situations. In future works quantitative results will be given, and different situations will be analyzed.
基金supported by Warren Alpert Foundation and Houston Methodist Academic Institute Laboratory Operating Fund(to HLC).
文摘Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.
基金funded by 2024 Scientific Research Project of Chongqing Medical and Pharmaceutical College(No.ygzrc2024101)Chongqing Education Commission Natural Science Foundation(No.KJQN202402821)+2 种基金Chongqing Shapingba District Science and Technology Bureau Project(No.2024071)2024 Chongqing Medical and Pharmaceutical College Innovation Research Group Project(No.ygz2024401)Chongqing Science and Health Joint Medical Research Project(No.2024SQKWLHMS051),respectively.
文摘Yeast-based models have become a powerful platform in pharmaceutical research,offering significant potential for producing complex drugs,vaccines,and therapeutic agents.While many current drugs were discovered before fully understanding their molecular mechanisms,yeast systems now provide valuable insights for drug discovery and personalized medicine.Recent advancements in genetic engineering,metabolic engineering,and synthetic biology have improved the efficiency and scalability of yeast-based production systems,enabling more sustainable and cost-effective manufacturing processes.This paper reviews the latest developments in yeast-based technologies,focusing on their use as model organisms to study disease mechanisms,identify drug targets,and develop novel therapies.We highlight key platforms such as the yeast two-hybrid system,surface display technologies,and optimized expression systems.Additionally,we explore the future integration of yeast engineering with artificial intelligence(AI),machine learning(ML),and advanced genome editing technologies like CRISPR/Cas9,which are expected to accelerate drug discovery and enable personalized therapies.Furthermore,yeast-based systems are increasingly employed in largescale drug production,vaccine development,and therapeutic protein expression,offering promising applications in clinical and industrial settings.This paper discusses the practical implications of these systems and their potential to revolutionize drug development,paving the way for safer,more effective therapies.
基金National Key R&D Program of China[Grant Number 2018YFB0505304]National Natural Science Foundation of China[Grant Number 41671409].
文摘With the rapid development of digital earth,smart city,and digital twin technology,the demands of three-dimensional model data’s application is getting higher and higher.These data tend to be multi-objectification,multi-type,multi-scale,complex spatial relationship,and large amount,which brings great challenges to the efficient organization of them.This paper mainly studies the organization of three-dimensional model data,and the main contributions are as follows:1)A integer coding method of three dimensional multi-scale grid is proposed,which can reduce the four-dimensional(spatial dimension and scale dimension)space into one-dimensional,and has better space and scale clustering characteristics by comparing with various types of grid coding.2)The binary algebra calculation method is proposed to realize the basic spatial relationship calculation of three-dimensional grid,which has higher spatial relationship computing ability than 3D-Geohash method;3)The multi-scale integer coding method is applied to the data organization of three-dimensional city model,and the experiment results show that:it is more efficient and stable than the threedimensional R-tree index and Geohash coding method in the establishment of index and the query of three dimensional space.
文摘In this paper, the studies show that the framework of the original organizational models based on the philosophy view is constructed. The driving forces are also expatiated in the paper. Matching with the time and space in which the organization exists, fitted with the extra environment, making the organization take effect and properly controlling the important potential factors for the organizations further are the four driving forces development. The supporting pillars are cooperation in the competition, communication, negotiation and proper equal culture environment. At last, the researches point out that organization is a process, while organizational model is only a tool for us to realize the world.
文摘This paper discusses an organizational model to be used for both conventional and virtual organizations. The model deals with variable relationships within an organization and provides a framework for overall organizational design that may include relationship among different design variables and external relationship with environment. Based on the researches of virtual organization, this paper also illustrates the new model of organization in the real world such as Beijing 2008 Olympic games and Dongfeng Automobile group.
基金supported by a grant from the Key Programs of the Chinese Academy of Sciences(KJZD-EW-L13)2015 Western Light Talent Culture Project of the Chinese Academy of Sciences(Y6C3021)the National Natural Science Foundation of China(31471964)
文摘Model organisms have long been important in biology and medicine due to their specific characteristics. Amphibians, especially Xenopus, play key roles in answering fundamental questions on developmental biology, regeneration, genetics, and toxicology due to their large and abundant eggs, as well as their versatile embryos, which can be readily manipulated and developed in vivo. Furthermore, amphibians have also proven to be of considerable benefit in human disease research due to their conserved cellular developmental and genomic organization. This review gives a brief introduction on the progress and limitations of these animal models in biology and human disease research, and discusses the potential and challenge of Microhyla fissipes as a new model organism.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2003AA603440) and the Knowledge In-novation Program from the Chinese Academy of Sciences (No.KZCX2-211)
文摘The ascidian Ciona intestinalis is a model organism of developmental and evolutionary biology and may provide orucial clues concerning two fundamental matters, namely, how chordates originated from the putative deuterostome ancestor and how advanced chordates originated from the simplest chordates. In this paper, a whole-life-span culture of C. intestinalis was conducted. Fed with the diet combination of dry Spirulina, egg yolk, Dicrateria sp., edible yeast and weaning diet for shrimp, C. intestinalis grew up to average 59 mm and matured after 60 d cultivation. This culture process could be repeated using the artificially cultured mature ascidians as material. When the fertilized eggs were maintained under 10, 15, 20, 25 ℃, they hatched within 30 h, 22 h, 16 h and 12 h 50 min respectively experiencing cleavage, blastulation, gastrulation, neurulation, tailbud stage and tadpole stage, The tadpole larvae were characterized as typical but simplified chordates because of their dorsal nerve cord, notochord and primordial brain. After 8-24 h freely swimming, the tadpole larvae settled on the substrates and metamorphosized within 1-2 d into filter feeding sessile juvenile ascidians. In addition, unfertilized eggs were successfully dechorionated in filtered seawater containing 1% Tripsin, 0.25% EDTA at pH of 10.5 within 40 min. After fertilization, the dechorionated eggs developed well and hatched at normal hatching rate. In conclusion, this paper presented feasible methodology for rearing the tadpole larvae of C. intestinalis into sexual maturity under controlled conditions and detailed observations on the embryogenesis of the laboratory cultured ascidians, which will facilitate developmental and genetic research using this model system.
基金supported in part by the grants from the National Basic Research Program of China (Nos.MOST945300 and MOST944500 to TPZ)the National Natural Science Foundation of China (No.31172173 to TPZ)
文摘Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology. Invertebrates like Hydra and planarians exhibit amazing feats of regeneration, in which an entire organism can be restored t^om minute body segments. Vertebrates like teleost fish and amphibians can also regrow large sections of the body. While this regenerative capacity is greatly attenuated in mammals, there are portions of major organs that remain regenerative. Regardless of the extent, there are common basic strategies to regeneration, including activation of adult stem cells and proliferation of differentiated cells. Here, we discuss the cellular features and molecular mechanisms that are involved in regeneration in different model organisms, including 14ydra, planarians, zebrafish and newts as well as in several mammalian organs.
基金supported by the National Natural Science Foundation of China(No.U2106231)the National Key R&D Program of China(No.2022YFD2400303)the Key R&D Project of Shandong Province(No.2022 TZXD003).
文摘A better understanding of genetic bases of growth regulation is essential for bivalve breeding,which is helpful to improve the yield of the commercially important bivalves.While previous studies have identified some candidate genes accounting for variation in growth-related traits through genotype-phenotype association analyses,seldom of them have verified the functions of these putative,growth-related genes beyond the genomic level due to the difficulty of culturing commercial bivalves under laboratory conditions.Fortunately,dwarf surf clam Mulinia lateralis can serve as a model organism for studying marine bivalves given its short generation time,the feasibility of being grown under experimental conditions and the availability of genetic and biological information.Using dwarf surf clam as a model bivalve,we characterize E2F3,a gene that has been found to account for variation in growth in scallops by a previous genome-wide association study,and verify its function in growth regulation through RNA interference(RNAi)experiments.For the first time,E2F3 in dwarf surf clam,which is termed as MulE2F3,is characterized.The results reveal that dwarf surf clams with MulE2F3 knocked down exhibit a reduction in both shell size and soft-tissue weight,indicating the functions of MulE2F3 in positively regulating bivalve growth.More importantly,we demonstrate how dwarf surf clam can be used as a model organism to investigate gene functions in commercial bivalves,shedding light on genetic causes for variation in growth to enhance the efficiency of bivalve farming.
基金the financial assistance provided by University Grants Commission, New Delhi, India, under Special Assistance Program (SAP) to the Department of Petroleum Engineering, Indian School of Mines, Dhanbad, India
文摘A low-viscosity emulsion of crude oil in water can be believed to be the bulk of a flow regime in a pipeline.To differentiate which crude oil would and which would not counter the blockage of flow due to gas hydrate formation in flow channels,varying amount of crude oil in water emulsion without any other extraneous additives has undergone methane gas hydrate formation in an autoclave cell.Crude oil was able to thermodynamically inhibit the gas hydrate formation as observed from its hydrate stability zone.The normalized rate of hydrate formation in the emulsion has been calculated from an illustrative chemical affinity model,which showed a decrease in the methane consumption(decreased normalized rate constant) with an increase in the oil content in the emulsion.Fourier transform infrared spectroscopy(FTIR) of the emulsion and characteristic properties of the crude oil have been used to find the chemical component that could be pivotal in selfinhibitory characteristic of the crude oil collected from Ankleshwar,India,against a situation of clogged flow due to formation of gas hydrate and establish flow assurance.
基金supported by Horizon 2020 grant 633589FWO Flanders grant G052217NKU Leuven grant C16/19/003。
文摘A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications.Conditional expression allows for (ir)reversible switching of genes on or off,with the potential of spatial and/or temporal control.This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis,providing tools to answer a wider array of research questions across biological disciplines.Spatial and/or temporal control are granted primarily by(combinations of) specific promoters,temperature regimens,compound addition,or illumination.The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales,using organisms amenable to easy genetic manipulation.Recent years witnessed an exciting expansion and optimization of such tools,of which we provide a comprehensive overview and discussion regarding their use in invertebrates.The mechanism,applicability,benefits,and drawbacks of each of the systems,as well as further developments to be expected in the foreseeable future,are highlighted.
文摘The adsorb model of formic acid on NaX derived from TPD was discussed. It was showed that the adsorb sites were various exposed framework O2- centers bearing different basic intensity and spatial resistance. The h-peak was attributed to O2- near S-III in supercage and l-peak to O2- near S-II in beta-cage of faujusite zeolite. The model can explain the experimental results. Meanwhile, a relative standard of basic intensity based on TPD of formic acid was founded.
文摘Nowadays, many countries and regions use the human resources development as the major approach in holding the initiative in competition. The Baotou Rare Earth High-tech Area implements the strategies for revitalizing the area through establishing science and education learning organization and developing the entire learning in Management Committee. In accordance with the fundamental of mathematics "The arithmetical mean is equal to or larger than its geometric mean to any positive real number", it submits "the theoretical model of proportional development advantage of the same element in the same level" in order to solve "the problem that a few people behind in the department block the development of the High-tech Area", realize every member's common progress and each department's proportional development, and finally make the effect of Rare Earth High-tech maximum by strengthening team cooperation and producing a multiplier effect.
基金This work was was supported by the National Natural Science Foundation of China(Nos.82270599 and 81902431).
文摘The technology of three-dimensional(3D)printing emerged in the late 1970s and has since undergone considerable development to find numerous applications in mechanical engineering,industrial design,and biomedicine.In biomedical science,several studies have initially found that 3D printing technology can play an important role in the treatment of diseases in hepatopancreatobiliary surgery.For example,3D printing technology has been applied to create detailed anatomical models of disease organs for preoperative personalized surgical strategies,surgical simulation,intraoperative navigation,medical training,and patient education.Moreover,cancer models have been created using 3D printing technology for the research and selection of chemotherapy drugs.With the aim to clarify the development and application of 3D printing technology in hepatopancreatobiliary surgery,we introduce seven common types of 3D printing technology and review the status of research and application of 3D printing technology in the field of hepatopancreatobiliary surgery.
基金Supported by the National Natural Science Foundation of China(Nos.32371704,32373178)。
文摘The increasing global concern regarding plastic pollution has prompted the research into the consequences of microplastics(MPs)on aquatic ecosystems.Fairy shrimp Branchinella kugenumaensis are freshwater planktonic organisms that have existed for 250 million years.This study aimed to uncover the harmful effects of MPs,with a particular focus on their size variations(0.1,1,and 5μm),on the fairy shrimp.We focused on how MPs could significantly affect the survival and growth of fairy shrimp.Notably,larger MPs,especially those measuring 5μm,caused higher mortality rates and hindered the growth compared to smaller ones.The impact of MPs continued even subsequent to depuration in clean water.The accumulation of MPs within the intestines of fairy shrimp resulted in intestinal blockages,disrupted excretory functions,and harmed intestinal epithelial cells.Examinations at the histological,cellular,and molecular levels showed that exposure to MPs triggered necroptosis in intestinal cells,accompanied by alterations in pathways related to transcription,translation,digestion,energy metabolism,and neurological functions.Furthermore,the effects of MPs on gene expression and pathways varied based on particle size,with larger MPs having a more significant effect and causing a strong response in xenobiotic biodegradation and metabolism pathways.We suggest that the increasing severity of MPs pollution could pose a significant threat to the survival of fairy shrimp.This study provided vital insights into the complex relationship between microplastics and aquatic organisms,and highlighted the urgent need to address the potential devastating impact of plastic pollution on freshwater ecosystems.Additionally,due to their rapid growth,strong reproductive capacity,sensitivity,and ease of cultivation,fairy shrimp hold the potential candidate to serve as a model organism for studying the effects of MPs and other pollutants on freshwater ecosystems.
基金financed by the National Science Centre, Poland (No. 2019/35/B/NZ2/02658 to P.J.).
文摘Ribonucleases (RNases), essential for RNA metabolism, are implicated in human diseases, including neurodevelopmental, developmental, hematopoietic and other dysfunctions through mutations that disrupt their enzymatic functions. Exploring RNase mutations across organisms offers insights into Mendelian diseases, facilitating molecular dissection of pathological pathways and therapeutic development. By employing model organisms, our analysis underscores the evolutionary conservation of RNase genes, facilitating deeper insights into disease mechanisms. These models are vital for uncovering rare molecular dysfunctions and potential therapeutic targets, demonstrating the effectiveness of integrated research approaches in addressing complex genetic disorders. Drawing from phylogenetic analyses, literature survey, and databases documenting the effects of human disease-causing mutations, the review highlights the significance and advantages of employing model organisms to study specific Mendelian disorders.
基金supported by the National Natural Science Foundation of China (No. 30825025)
文摘Liver is one of the largest internal organs in the body and its importance for metabolism, detoxification and homeostasis has been well established. In this review, we summarized recent progresses in studying liver initiation and development during embryogenesis using zebrafish as a model system. We mainly focused on topics related to the specification of hepatoblasts from endoderm, the formation and growth of liver bud, the differentiation of hepatocytes and bile duct cells from hepatoblasts, and finally the role of mesodermal signals in controlling liver development in zebrafish.
基金supported by the National Natural Science Foundation of China(No.61404069)the National High-Tech Research and Develpment(863)Program of China(No.2015AA015403)
文摘At present, robot embedded systems have some common problems such as closure and poor dynamic evolution. Aiming at resolving this situation, our paper focuses on improvements to the robot embedded system and sets up a new robot system architecture, and we propose a syncretic mechanism of a robot and SoftMan (SM). In the syncretic system, the structural organization of the SoftMan group and its modes are particularly important in establishing the task coordination mechanism. This paper, therefore, proposes a coordination organization model based on the SoftMan group, and studies in detail the process of task allocation for resource contention, which facilitates a rational allocation of system resources. During our research, we introduced Resource Requirement Length Algorithm (RRLA) to calculate the resource requirements of the task and a resource conformity degree allocation algorithm of Resource Conformity Degree Algorithm (RCDA) for resource contention. Finally, a comparative evaluation of RCDA with five other frequently used task allocation algorithms shows that RCDA has higher success and accuracy rates with good stability and reliability.