Curved beams with complex geometries are vital in numerous engineering applications,where precise vibration analysis is crucial for ensuring safe and effective designs.Traditional finite element methods(FEMs) often st...Curved beams with complex geometries are vital in numerous engineering applications,where precise vibration analysis is crucial for ensuring safe and effective designs.Traditional finite element methods(FEMs) often struggle to accurately represent the dynamic characteristics of these structures due to the limitations in their shape function approximations.To overcome this challenge,the current study introduces an innovative finite element(FE)-based technique for the undamped vibrational analysis of curved beams with arbitrary curvature,employing explicitly derived interpolation functions.Initially,the exact interpolation functions are developed for circular are elements with the force method.These functions facilitate the creation of a highly accurate stiffness matrix,which is validated against the benchmark examples.To accommodate arbitrary curvature,a systematic transformation technique is established to approximate the intricate curves with a series of circular arcs.The numerical findings indicate that increasing the number of arc segments enhances accuracy,approaching the exact solutions.The analysis of free vibrations is conducted for both circular and non-circular beams.Mass matrices are derived using two methods:lumped mass and consistent mass,where the latter is based on the interpolation functions.The effectiveness of the proposed method is confirmed through the comparisons with the existing literature,demonstrating strong agreement.Finally,several practical cases involving beams with diverse curvature profiles are analyzed.Both natural frequencies and mode shapes are determined,providing significant insights into the dynamic behavior of these structures.This research offers a dependable and efficient analytical framework for the vibrational analysis of complex curved beams,with promising implications for structural and mechanical engineering.展开更多
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio...The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.展开更多
The differential transformation method (DTM) is applied to investigate free vibration of functionally graded beams supported by arbitrary boundary conditions, including various types of elastically end constraints. Th...The differential transformation method (DTM) is applied to investigate free vibration of functionally graded beams supported by arbitrary boundary conditions, including various types of elastically end constraints. The material properties of functionally graded beams are assumed to obey the power law distribution. The main advantages of this method are known for its excellence in high accuracy with small computational expensiveness. The DTM also provides all natural frequencies and mode shapes without any frequency missing. Fundamental frequencies as well as their higher frequencies and mode shapes are presented. The significant aspects such as boundary conditions, values of translational and rotational spring constants and the material volume fraction index on the natural frequencies and mode shapes are discussed. For elastically end constraints, some available results of special cases for isotropic beams are used to validate the present results. The new frequency results and mode shapes of functionally graded beams resting on elastically end constraints are presented.展开更多
文摘Curved beams with complex geometries are vital in numerous engineering applications,where precise vibration analysis is crucial for ensuring safe and effective designs.Traditional finite element methods(FEMs) often struggle to accurately represent the dynamic characteristics of these structures due to the limitations in their shape function approximations.To overcome this challenge,the current study introduces an innovative finite element(FE)-based technique for the undamped vibrational analysis of curved beams with arbitrary curvature,employing explicitly derived interpolation functions.Initially,the exact interpolation functions are developed for circular are elements with the force method.These functions facilitate the creation of a highly accurate stiffness matrix,which is validated against the benchmark examples.To accommodate arbitrary curvature,a systematic transformation technique is established to approximate the intricate curves with a series of circular arcs.The numerical findings indicate that increasing the number of arc segments enhances accuracy,approaching the exact solutions.The analysis of free vibrations is conducted for both circular and non-circular beams.Mass matrices are derived using two methods:lumped mass and consistent mass,where the latter is based on the interpolation functions.The effectiveness of the proposed method is confirmed through the comparisons with the existing literature,demonstrating strong agreement.Finally,several practical cases involving beams with diverse curvature profiles are analyzed.Both natural frequencies and mode shapes are determined,providing significant insights into the dynamic behavior of these structures.This research offers a dependable and efficient analytical framework for the vibrational analysis of complex curved beams,with promising implications for structural and mechanical engineering.
基金Supported by National Natural Science Foundation of China(Grant No.51375424)
文摘The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.
文摘The differential transformation method (DTM) is applied to investigate free vibration of functionally graded beams supported by arbitrary boundary conditions, including various types of elastically end constraints. The material properties of functionally graded beams are assumed to obey the power law distribution. The main advantages of this method are known for its excellence in high accuracy with small computational expensiveness. The DTM also provides all natural frequencies and mode shapes without any frequency missing. Fundamental frequencies as well as their higher frequencies and mode shapes are presented. The significant aspects such as boundary conditions, values of translational and rotational spring constants and the material volume fraction index on the natural frequencies and mode shapes are discussed. For elastically end constraints, some available results of special cases for isotropic beams are used to validate the present results. The new frequency results and mode shapes of functionally graded beams resting on elastically end constraints are presented.