This paper studies the total ionizing dose radiation effects on MOS (metal-oxide-semiconductor) transistors with normal and enclosed gate layout in a standard commercial CMOS (compensate MOS) bulk process. The lea...This paper studies the total ionizing dose radiation effects on MOS (metal-oxide-semiconductor) transistors with normal and enclosed gate layout in a standard commercial CMOS (compensate MOS) bulk process. The leakage current, threshold voltage shift, and transconductance of the devices were monitored before and after γ-ray irradiation. The parameters of the devices with different layout under different bias condition during irradiation at different total dose are investigated. The results show that the enclosed layout not only effectively eliminates the leakage but also improves the performance of threshold voltage and transconductance for NMOS (n-type channel MOS) transistors. The experimental results also indicate that analogue bias during irradiation is the worst case for enclosed gate NMOS. There is no evident different behaviour observed between normal PMOS (p-type channel MOS) transistors and enclosed gate PMOS transistors.展开更多
The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for th...The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for the devices. The ionising and nonionising energy losses of incident particles are calculated using the Geant4 and the stopping and range of ions in matter code. The results of the experiment and energy loss calculation for different particles show that different incident particles may give different contributions to MOS and bipolar devices. The irradiation particles, which cause a larger displacement dose within the same chip depth of bipolar devices at a given total dose, would generate more severe damage to the voltage parameters of the bipolar devices. On the contrary, the irradiation particles, which cause larger ionising damage in the gate oxide, would generate more severe damage to MOS devices. In this investigation, we attempt to analyse the sensitivity to radiation damage of the different parameter of the MOS and bipolar devices by comparing the irradiation experimental data and the calculated results using Geant4 and SRIM code.展开更多
Both the band filling effect and Fe/Mo disorder have a close correlation with the physical properties of the double perovskite Ca2FeMoO6. Two series of Ca2FeMoO6and Nd0.3Ca1.7FeMoO6ceramics sintered at(1050℃, 1200℃,...Both the band filling effect and Fe/Mo disorder have a close correlation with the physical properties of the double perovskite Ca2FeMoO6. Two series of Ca2FeMoO6and Nd0.3Ca1.7FeMoO6ceramics sintered at(1050℃, 1200℃, and 1300℃) were specially designed to comparatively investigate the band-filling effect and Fe/Mo disorder on the physical properties of Ca2FeMoO6. The x-ray diffraction indicates that Fe/Mo disorder is sensitive to the sintering temperature. The magnetization behavior is mainly controlled by the Fe/Mo disorder not by the band filling effect, manifested by a close correlation of saturated magnetization(Ms) with the Fe/Mo disorder. Interestingly, magnetoresistance(MR) property of the same composition is dominantly contributed by the grain boundary strength, which can be expressed by the macroscopic resistivity values. However, the band filling effect caused by the Nd-substitution can decrease the spin polarization, and thus suppress the MR performance fundamentally. Contrary to the MR response, the Curie temperature(TC) shows an obvious optimization due to the band filling effect, which increases the carrier density near the Fermi level responsible for the ferromagnetic coupling interaction strengthen. Maybe, our work can provoke further research interests into the correlation of the band-filling effects and Fe/Mo disorder with the physical properties of other Fe/Mo-based double perovskites.展开更多
This paper discusses the effect of ageing on the thermally induced martensitic transformation and its reverse transformation and shape memory effect of Fe-24Mn-5Si-8Co-4Mo shape memory alloy:the precipitation of Fe 2...This paper discusses the effect of ageing on the thermally induced martensitic transformation and its reverse transformation and shape memory effect of Fe-24Mn-5Si-8Co-4Mo shape memory alloy:the precipitation of Fe 2Mo particles increases the hardness and strength of the alloy as ageing goes on;ageing increases the transformation temperatures;ageing improves,the SME of the alloy so remarkably that a maximum shape recovery ratio is obtained while ageing at 600℃.展开更多
A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr2FeMo06 (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits ...A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr2FeMo06 (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits I4/m symmetry. The cation order η of the sample increases to 98.9(2)% from 94.2(3)%, which is prepared by the traditional sol-gel method. The initial magnetization isotherm of the sample is detected at 300 K. Unit-cell magnetization for the current sample is 1.332 #s at 300 K, and the one for the traditional sol-gel method sample is 0.946#9. Unit-cell magnetization is enhanced to 40.80% by the quench-treatment technique. Quench treatment is an effective method of enhancing the Fe/Mo order and magnetic properties of double perovskite SFMO.展开更多
The key application technology for sex pheromone of Grapholitha molesta was studied from the aspects of different hanging heights and orientations, dif- ferent doses and types of traps through the tests on trapping qu...The key application technology for sex pheromone of Grapholitha molesta was studied from the aspects of different hanging heights and orientations, dif- ferent doses and types of traps through the tests on trapping quantity of G. molesta in fields. The results showed that the trapping effect was enhanced when the hanging height was increased, and the trapping effect was the best in west direction. The trapping effect was enhanced when the dosage was increased. When it was up to 6 lures, the trapping effect was the best with 38.75 head/trap; the next was 2 lures with 31.00 head/trap. All types of traps had trapping ability to G. mo- lesta, among which triangle trapper was the best, followed by self-made bottle trap. Their trapping effects were 138.75 and 100.25 head/trap, respectively.展开更多
The microstructures and mechanics properties of TiC-based cermets composed of TiC, WC, Ni, Co, Mo, and Cr3C2 were investigated. The results show that Mo has a great effect on the sintering densification, microstructur...The microstructures and mechanics properties of TiC-based cermets composed of TiC, WC, Ni, Co, Mo, and Cr3C2 were investigated. The results show that Mo has a great effect on the sintering densification, microstructures, and mechanical properties. The microstructures and distribution of Mo and Ti in the TiC-based cermets were analyzed. It was indicated that a new phase with Ti, Mo, W, and C was formed on the rim of (Ti,W)C grains by means of an addition of Mo into the TiC-based cermets. The new phase with a surrounding structure was of great aid to improve the wettability of the liquid phase on the solid phase surface of TiC, decrease the porosity and refine the grains of the hard phase, which gave rise to the increase in strength and hardness. The properties of the TiC-based cermets could be further improved to some extent by adding WC, Cr2C3, and Co.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 6037202/F010204).
文摘This paper studies the total ionizing dose radiation effects on MOS (metal-oxide-semiconductor) transistors with normal and enclosed gate layout in a standard commercial CMOS (compensate MOS) bulk process. The leakage current, threshold voltage shift, and transconductance of the devices were monitored before and after γ-ray irradiation. The parameters of the devices with different layout under different bias condition during irradiation at different total dose are investigated. The results show that the enclosed layout not only effectively eliminates the leakage but also improves the performance of threshold voltage and transconductance for NMOS (n-type channel MOS) transistors. The experimental results also indicate that analogue bias during irradiation is the worst case for enclosed gate NMOS. There is no evident different behaviour observed between normal PMOS (p-type channel MOS) transistors and enclosed gate PMOS transistors.
基金Project supported by the National Basis Research Program of China (Grant No. 61343)
文摘The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for the devices. The ionising and nonionising energy losses of incident particles are calculated using the Geant4 and the stopping and range of ions in matter code. The results of the experiment and energy loss calculation for different particles show that different incident particles may give different contributions to MOS and bipolar devices. The irradiation particles, which cause a larger displacement dose within the same chip depth of bipolar devices at a given total dose, would generate more severe damage to the voltage parameters of the bipolar devices. On the contrary, the irradiation particles, which cause larger ionising damage in the gate oxide, would generate more severe damage to MOS devices. In this investigation, we attempt to analyse the sensitivity to radiation damage of the different parameter of the MOS and bipolar devices by comparing the irradiation experimental data and the calculated results using Geant4 and SRIM code.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1504107)the Doctoral Scientific Research Foundation(Grant No.qd15214)
文摘Both the band filling effect and Fe/Mo disorder have a close correlation with the physical properties of the double perovskite Ca2FeMoO6. Two series of Ca2FeMoO6and Nd0.3Ca1.7FeMoO6ceramics sintered at(1050℃, 1200℃, and 1300℃) were specially designed to comparatively investigate the band-filling effect and Fe/Mo disorder on the physical properties of Ca2FeMoO6. The x-ray diffraction indicates that Fe/Mo disorder is sensitive to the sintering temperature. The magnetization behavior is mainly controlled by the Fe/Mo disorder not by the band filling effect, manifested by a close correlation of saturated magnetization(Ms) with the Fe/Mo disorder. Interestingly, magnetoresistance(MR) property of the same composition is dominantly contributed by the grain boundary strength, which can be expressed by the macroscopic resistivity values. However, the band filling effect caused by the Nd-substitution can decrease the spin polarization, and thus suppress the MR performance fundamentally. Contrary to the MR response, the Curie temperature(TC) shows an obvious optimization due to the band filling effect, which increases the carrier density near the Fermi level responsible for the ferromagnetic coupling interaction strengthen. Maybe, our work can provoke further research interests into the correlation of the band-filling effects and Fe/Mo disorder with the physical properties of other Fe/Mo-based double perovskites.
文摘This paper discusses the effect of ageing on the thermally induced martensitic transformation and its reverse transformation and shape memory effect of Fe-24Mn-5Si-8Co-4Mo shape memory alloy:the precipitation of Fe 2Mo particles increases the hardness and strength of the alloy as ageing goes on;ageing increases the transformation temperatures;ageing improves,the SME of the alloy so remarkably that a maximum shape recovery ratio is obtained while ageing at 600℃.
基金Supported by the National Natural Science Foundation of China under Grant No U1304110the Doctoral Science Foundation of Henan Normal University under Grant No 01026500109
文摘A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr2FeMo06 (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits I4/m symmetry. The cation order η of the sample increases to 98.9(2)% from 94.2(3)%, which is prepared by the traditional sol-gel method. The initial magnetization isotherm of the sample is detected at 300 K. Unit-cell magnetization for the current sample is 1.332 #s at 300 K, and the one for the traditional sol-gel method sample is 0.946#9. Unit-cell magnetization is enhanced to 40.80% by the quench-treatment technique. Quench treatment is an effective method of enhancing the Fe/Mo order and magnetic properties of double perovskite SFMO.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest( 201103024)
文摘The key application technology for sex pheromone of Grapholitha molesta was studied from the aspects of different hanging heights and orientations, dif- ferent doses and types of traps through the tests on trapping quantity of G. molesta in fields. The results showed that the trapping effect was enhanced when the hanging height was increased, and the trapping effect was the best in west direction. The trapping effect was enhanced when the dosage was increased. When it was up to 6 lures, the trapping effect was the best with 38.75 head/trap; the next was 2 lures with 31.00 head/trap. All types of traps had trapping ability to G. mo- lesta, among which triangle trapper was the best, followed by self-made bottle trap. Their trapping effects were 138.75 and 100.25 head/trap, respectively.
文摘The microstructures and mechanics properties of TiC-based cermets composed of TiC, WC, Ni, Co, Mo, and Cr3C2 were investigated. The results show that Mo has a great effect on the sintering densification, microstructures, and mechanical properties. The microstructures and distribution of Mo and Ti in the TiC-based cermets were analyzed. It was indicated that a new phase with Ti, Mo, W, and C was formed on the rim of (Ti,W)C grains by means of an addition of Mo into the TiC-based cermets. The new phase with a surrounding structure was of great aid to improve the wettability of the liquid phase on the solid phase surface of TiC, decrease the porosity and refine the grains of the hard phase, which gave rise to the increase in strength and hardness. The properties of the TiC-based cermets could be further improved to some extent by adding WC, Cr2C3, and Co.