TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti...TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.展开更多
Background:Myocardial infarction(MI)remains a major global public health challenge.Although advances in reperfusion therapy have reduced acute mortality,post-infarction cardiac remodeling continues to pose a substanti...Background:Myocardial infarction(MI)remains a major global public health challenge.Although advances in reperfusion therapy have reduced acute mortality,post-infarction cardiac remodeling continues to pose a substantial threat to long-term cardiovascular health.Oxidative stress and the ensuing inflammatory response are key drivers of this pathological process,leading to cardiomyocyte death,myocardial fibrosis,and functional impairment.Among the regulatory pathways involved,the kelch-like ECH-associated protein 1(Keap1)/nuclear factor erythroid 2-related factor 2(Nrf2)axis has emerged as a critical therapeutic target for mitigating post-MI cardiac injury.Methods:A murine MI model was established by permanent ligation of the left anterior descending coronary artery.Mice received oral Tongxinbi formula(TXB)at low,medium,or high doses(9/18/36 g/kg)once daily for 28 days.Cardiac function was assessed by echocardiography;myocardial fibrosis by Masson’s trichrome;and endothelial integrity by CD31 immunofluorescence.Plasma markers of endothelial function and inflammation were quantified.In vitro,oxidative stress was induced by H2O2 in vascular endothelial cells and cardiomyocytes,followed by treatment with TXB drug-containing serum.Western blot and RT-qPCR were used to measure components of the Keap1/Nrf2 pathway;ELISA quantified oxidative stress and inflammatory indices.Conditioned-medium experiments evaluated endothelial cell–mediated paracrine protection of cardiomyocytes.Results:TXB significantly improved cardiac function and reduced myocardial fibrosis after MI,in association with preservation of microvascular structure and systemic attenuation of oxidative stress and inflammation.In vitro,TXB activated the endothelial Keap1/Nrf2 pathway,enhanced cellular antioxidant defenses,increased VEGF secretion,and,via endothelial cell-mediated paracrine signaling,alleviated cardiomyocyte injury under oxidative stress.Conclusion:TXB exerts anti-fibrotic and cardioprotective effects by activating Nrf2 signaling and engaging endothelial-mediated paracrine mechanisms,collectively mitigating oxidative stress and inflammation in the post-MI setting.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping...The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping is the primary method to enhance the reaction characteristics of calcium-based materials over multiple cycles.In particular,co-doping with variable-valence metal oxides(VVMOs)can effectively increase the oxygen vacancy content in calcium-based materials,significantly improving their cyclic reaction characteristics.However,there are so numerous VVMOs co-doping schemes that the experimental screening process is complex,consuming considerable time and economic costs.Density functional theory(DFT)calculations have been widely used to reveal the impact of metal oxide doping on the cyclic reaction characteristics of calcium-based materials,with calculation results showing good agreement with experimental conclusions.Nevertheless,there is still a lack of research on utilizing DFT to screen calcium-based materials,and a systematic research methodology has not yet been established.In this study,a systematic DFT-based screening methodology for calcium-based materials was proposed.A series of key parameters for DFT calculations including CO_(2)adsorption energy,oxygen vacancy formation energy,and sintering resistance were proposed.Furthermore,a preliminary mathematical model to predict the CaL TCES and CO_(2)capture performance of calcium-based materials was introduced.The aforementioned DFT method was employed to screen for VVMOs co-doped calcium-based materials.The results revealed that Mn and Ce co-doped calcium-based materials exhibited superior DFT-predicted reaction characteristics.These DFT predictions were validated through experimental assessments of cyclic thermochemical energy storage,CO_(2)capture,and relevant characterization.The outcomes demonstrate a high degree of consistency among DFT-based predictions,experimental results,and characterization.Hence,the DFT-based screening methodology for calcium-based materials proposed herein is a viable solution,poised to offer theoretical insights for the efficient design of calcium-based materials.展开更多
MnOx-CeO2 oxides prepared by complexation-combustion method were used for soot oxidation. The highest conversion rate of soot was obtained on a MnOx-CeO2 oxide prepared under mild acid condition of pH = 4, where the o...MnOx-CeO2 oxides prepared by complexation-combustion method were used for soot oxidation. The highest conversion rate of soot was obtained on a MnOx-CeO2 oxide prepared under mild acid condition of pH = 4, where the oxidation temperature corresponding to maximum activity was decreased more than 150 ℃ compared with that of un-catalytic soot oxidation. The structure and property of the catalysts were investigated by X-ray powder diffraction (XRD) and temperature programmed reduction (TPR). The results indicated that there were at least two kinds of Mn species present in MnOx-CeO2 catalysts, i.e. Mn ions within CeO2 lattice and high dispersion MnOx on the surface of CeO2. The presence of Mn ions in the CeO2 lattice improved the oxygen vacancy due to the charge difference, and the CeO2 considerably decreased the reduction temperature of MnOx. The capability to activate oxygen through the oxygen exchange between O2 in gas phase and lattice oxygen species in MnOx-CeO2 oxide contributed to the high catalytic activity for the reaction.展开更多
The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. Acco...The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 ca...MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.展开更多
Zr-doped CuO-CeO2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N2 adsorption-desorption isothe...Zr-doped CuO-CeO2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N2 adsorption-desorption isotherms, powder X-ray diffraction, temperature-programmed reduction and Xray photoelectron spectroscopy. It is observed that the catalyst prepared by hydrothermal method exhibits larger specific surface area, smaller crystalline size and higher dispersion of active components compared with those of the catalyst obtained by coprecipitation. Meanwhile, redox properties of copper oxide are improved significantly and highly dispersed copper species providing CO oxidation sites are present on the surface. Furthermore, adsorptive centers of CO and active oxygen species increase on the copper-ceria interfaces. The Zr-doped CuO-CeO2 catalyst prepared by hydrothermal method possesses superior catalytic activity and selectivity for selective oxidation of CO at low temperature compared with those of the sample prepared by coprecipitation. The temperature corresponding to 50% CO conversion is only 73 ℃ and the temperature span of total CO conversion is expanded from 120 to 160 ℃.展开更多
A series of TiO 2-XSiO 2[X denotes the molar fraction(%) of silica in the mixed oxides] with different \{n(Ti)\}/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared wer...A series of TiO 2-XSiO 2[X denotes the molar fraction(%) of silica in the mixed oxides] with different \{n(Ti)\}/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared were characterized by XRD, thermal analysis, FTIR, UV-Vis and SPS. The characterization results of FTIR and UV-Vis spectra show that Ti atoms were gradually changed from octahedral coordination to tetrahedral coordination with the addition of silica, which is not beneficial for obtaining strong Brnsted acidity and higher photocatalytic activity. The photocatalytic activity experiments, which were conducted by using heptane(or SO 2) as the model reactant, showed that TiO 2-SiO 2 containing a suitable amount of silica can exhibit much higher photocatalytic activity than pure TiO 2. The enhanced photocatalytic activity can be attributed to three following factors: (1) smaller crystalline size; (2) higher thermal stability; (3) the new strong Brnsted acidity.展开更多
CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for...CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.展开更多
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane ...A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.展开更多
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applicatio...Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.展开更多
Mn-Ni oxides with different compositions were prepared using standard co-precipitation(CP) and urea hydrolysis-precipitation(UH) methods and optimized for the selective catalytic reduction of nitrogen oxides(NOx) by N...Mn-Ni oxides with different compositions were prepared using standard co-precipitation(CP) and urea hydrolysis-precipitation(UH) methods and optimized for the selective catalytic reduction of nitrogen oxides(NOx) by NH3 at low temperature.Mn((2))Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH(with Mn:Ni molar ratio of 2:1) catalysts showed almost identical selective catalytic reduction(SCR) catalytic activity,with about 96% NOx conversion at 750 C and-99%in the temperature range from 100 to 250℃.X-ray diffraction(XRD) results showed that Mn(2)Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH catalysts crystallized in the form of Mn2NiO4 and MnO2-Mn2NiO4 spinel,respectively.The latter gave relatively good selectivity to N2,which might be due to the presence of the MnO2 phase and high metal-O binding energy,resulting in low dehydrogenation ability.According to the results of various characterization methods,it was found that a high density of surface chemisorbed oxygen species and efficient electron transfer between Mn and Ni in the crystal structure of Mn2NiO4 spinel played important roles in the high-efficiency SCR activity of these catalysts.Mn(2)Ni(1)Ox catalysts presented good resistance to H2O or/and SO2 with stable activity,which benefited from the Mn2NiO4 spinel structure and Eley-Rideal mechanism,with only slight effects from SO2.展开更多
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders...The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.展开更多
DBUH-Br_3 catalyzed selective conversion of sulfides to sulfoxides in the presence of H_2O_2 as oxidizing agent is described.The reaction was performed selectively at room temperature and relatively short reaction times.
Nanostructure K2NiF4 type oxides La2-xKxCuO4 complex oxides were prepared using the Sol-Gel method, characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), and Scanning Electron Microscopy (...Nanostructure K2NiF4 type oxides La2-xKxCuO4 complex oxides were prepared using the Sol-Gel method, characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), and Scanning Electron Microscopy (SEM). The catalytic activity for soot combustion was evaluated by the Temperature-Programmed Reaction (TPO) technique. The results demonstrated that the substitution quality of K^+ for La^3+ at the A-site would increase the catalytic activities of La2-xKxCuO4 for soot combustion greatly; the substitution quality affected the structure and catalytic activity obviously. The La1.8K0.2CuO4 complex oxides with tetrahedral structures had the best catalytic activity for soot combustion, and the ignition temperature of soot combustion was lowered from 490 to 320 ℃.展开更多
In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was ...In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO_2 adsorption capacity and the multi- cycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO_2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO_2 capture capacity of the adsorbent could be further increased by doping with 15 wt% K_2CO_3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture.展开更多
Defect engineering,especially oxygen vacancies(O-vacancies) introduction into metal oxide materials has been proved to be an effective strategy to manipulate their surface electron exchange processes.However,quantitat...Defect engineering,especially oxygen vacancies(O-vacancies) introduction into metal oxide materials has been proved to be an effective strategy to manipulate their surface electron exchange processes.However,quantitative investigation of O-vacancies on CO2 electroreduction still remains rather ambiguous.Herein,a series of nanoporous tin oxide(SnOx) materials have been prepared by thermal treatment at various temperatures and reaction conditions.The annealing temperature dependent Ovacancies property of the SnOx was revealed and attributed to the balance tunning of the desorption of oxygen species and the continous oxidation of SnOx.The as-prepared nanoporous SnOx with 300℃treatment was found to be highest O-vacant material and showed an impressive CO2 RR activity and selectivity towards the conversion of CO2 into formic acid(up to 88.6%),and superior HCOOH incomplete current density to other samples.The ideal performance of the O-vacancies rich SnOx-300 material can be ascribed to the high delocalized electron density inducing much enhanced adsorption of CO2 with O binding and benefiting the subsequent reduction with high selectively forming of formic acid.展开更多
In this study,Pd-Mg(Al)-LDH/γ-Al2O3 and Pd-Mg(Al)Zr-LDH/γ-Al2O3 precursors were synthesized by impregnating Na2PdCl4 on Mg(Al)-LDH/γ-Al2O3 and Mg(Al)Zr-LDH/γ-Al2O3,and then the precursors were calcinated and reduc...In this study,Pd-Mg(Al)-LDH/γ-Al2O3 and Pd-Mg(Al)Zr-LDH/γ-Al2O3 precursors were synthesized by impregnating Na2PdCl4 on Mg(Al)-LDH/γ-Al2O3 and Mg(Al)Zr-LDH/γ-Al2O3,and then the precursors were calcinated and reduced to obtain Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalysts.Compared with Pd/γ-Al2O3 catalyst,the hydrogenation efficiency of Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 increased by 15.7%and 24.0%,respectively.Moreover,the stability of Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalyst was also higher than that of Pd/γ-Al2O3.After four runs,the hydrogenation efficiency of Pd/γ-Al2O3 decreased from 12.1 to 10.0 g/L,while that of Pd-Mg(Al)Zr-MMO/γ-Al2O3 decreased from 15.0 to 14.3 g/L.The active aquinones selectivities of all catalysts were almost 99%.The structures of the catalysts were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N2 adsorption–desorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),CO chemisorption analysis,transmission electron microscopy(TEM),temperature-programmed reduction with hydrogen(H2-TPR),and X-ray photoelectron spectroscopy(XPS).The results indicate that the improved catalytic performance is attributed to the stronger interaction between Pd and Mg(Al)Zr-MMO/γ-Al2O3,smaller Pd particle size and higher Pd dispersion.This work develops an effective method to synthesize highly dispersed Pd nanoparticles based on the layered double hydroxides(LDHs)precursor.展开更多
基金supported by the Original Exploratory Program of the National Natural Science Foundation of China(No.52450012)。
文摘TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.
基金the Major Special Project of Jiangsu Administration of Traditional Chinese Medicine(Project No.ZT202116)the Key R&D Project of Jiangsu Province(Project No.BE2020727)+2 种基金the Yangzhou Science and Technology Program(Project No.YZ2021062,YZ2024143 and YZ2024194)the Third Batch of Academic Mentorship Program for Senior TCM Experts in Jiangsu Province(Project No.2019028)the 2023 Jiangsu Pharmaceutical Association–Aosaikang Hospital Pharmacy Research Project(Project No.A202333).
文摘Background:Myocardial infarction(MI)remains a major global public health challenge.Although advances in reperfusion therapy have reduced acute mortality,post-infarction cardiac remodeling continues to pose a substantial threat to long-term cardiovascular health.Oxidative stress and the ensuing inflammatory response are key drivers of this pathological process,leading to cardiomyocyte death,myocardial fibrosis,and functional impairment.Among the regulatory pathways involved,the kelch-like ECH-associated protein 1(Keap1)/nuclear factor erythroid 2-related factor 2(Nrf2)axis has emerged as a critical therapeutic target for mitigating post-MI cardiac injury.Methods:A murine MI model was established by permanent ligation of the left anterior descending coronary artery.Mice received oral Tongxinbi formula(TXB)at low,medium,or high doses(9/18/36 g/kg)once daily for 28 days.Cardiac function was assessed by echocardiography;myocardial fibrosis by Masson’s trichrome;and endothelial integrity by CD31 immunofluorescence.Plasma markers of endothelial function and inflammation were quantified.In vitro,oxidative stress was induced by H2O2 in vascular endothelial cells and cardiomyocytes,followed by treatment with TXB drug-containing serum.Western blot and RT-qPCR were used to measure components of the Keap1/Nrf2 pathway;ELISA quantified oxidative stress and inflammatory indices.Conditioned-medium experiments evaluated endothelial cell–mediated paracrine protection of cardiomyocytes.Results:TXB significantly improved cardiac function and reduced myocardial fibrosis after MI,in association with preservation of microvascular structure and systemic attenuation of oxidative stress and inflammation.In vitro,TXB activated the endothelial Keap1/Nrf2 pathway,enhanced cellular antioxidant defenses,increased VEGF secretion,and,via endothelial cell-mediated paracrine signaling,alleviated cardiomyocyte injury under oxidative stress.Conclusion:TXB exerts anti-fibrotic and cardioprotective effects by activating Nrf2 signaling and engaging endothelial-mediated paracrine mechanisms,collectively mitigating oxidative stress and inflammation in the post-MI setting.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金supported by the National Natural Science Foundation of China(52276204 and U22A20435)。
文摘The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping is the primary method to enhance the reaction characteristics of calcium-based materials over multiple cycles.In particular,co-doping with variable-valence metal oxides(VVMOs)can effectively increase the oxygen vacancy content in calcium-based materials,significantly improving their cyclic reaction characteristics.However,there are so numerous VVMOs co-doping schemes that the experimental screening process is complex,consuming considerable time and economic costs.Density functional theory(DFT)calculations have been widely used to reveal the impact of metal oxide doping on the cyclic reaction characteristics of calcium-based materials,with calculation results showing good agreement with experimental conclusions.Nevertheless,there is still a lack of research on utilizing DFT to screen calcium-based materials,and a systematic research methodology has not yet been established.In this study,a systematic DFT-based screening methodology for calcium-based materials was proposed.A series of key parameters for DFT calculations including CO_(2)adsorption energy,oxygen vacancy formation energy,and sintering resistance were proposed.Furthermore,a preliminary mathematical model to predict the CaL TCES and CO_(2)capture performance of calcium-based materials was introduced.The aforementioned DFT method was employed to screen for VVMOs co-doped calcium-based materials.The results revealed that Mn and Ce co-doped calcium-based materials exhibited superior DFT-predicted reaction characteristics.These DFT predictions were validated through experimental assessments of cyclic thermochemical energy storage,CO_(2)capture,and relevant characterization.The outcomes demonstrate a high degree of consistency among DFT-based predictions,experimental results,and characterization.Hence,the DFT-based screening methodology for calcium-based materials proposed herein is a viable solution,poised to offer theoretical insights for the efficient design of calcium-based materials.
基金supported by the Key Project of National Natural Science Foundation of China (No. 20603016)Liaoning Provincial Science &Technology Project of China (No. 20071074) for financial support of this research
文摘MnOx-CeO2 oxides prepared by complexation-combustion method were used for soot oxidation. The highest conversion rate of soot was obtained on a MnOx-CeO2 oxide prepared under mild acid condition of pH = 4, where the oxidation temperature corresponding to maximum activity was decreased more than 150 ℃ compared with that of un-catalytic soot oxidation. The structure and property of the catalysts were investigated by X-ray powder diffraction (XRD) and temperature programmed reduction (TPR). The results indicated that there were at least two kinds of Mn species present in MnOx-CeO2 catalysts, i.e. Mn ions within CeO2 lattice and high dispersion MnOx on the surface of CeO2. The presence of Mn ions in the CeO2 lattice improved the oxygen vacancy due to the charge difference, and the CeO2 considerably decreased the reduction temperature of MnOx. The capability to activate oxygen through the oxygen exchange between O2 in gas phase and lattice oxygen species in MnOx-CeO2 oxide contributed to the high catalytic activity for the reaction.
文摘The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金Project supported by the National key research and development program(2016YFC0204901)the National Natural Science Foundation of China(21576207)the introduction of talent and technology cooperation plan of Tianjin(14RCGFGX00849)
文摘MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.
基金Project supported by the National Natural Science Foundation of China(21406174 and 51508435)
文摘Zr-doped CuO-CeO2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N2 adsorption-desorption isotherms, powder X-ray diffraction, temperature-programmed reduction and Xray photoelectron spectroscopy. It is observed that the catalyst prepared by hydrothermal method exhibits larger specific surface area, smaller crystalline size and higher dispersion of active components compared with those of the catalyst obtained by coprecipitation. Meanwhile, redox properties of copper oxide are improved significantly and highly dispersed copper species providing CO oxidation sites are present on the surface. Furthermore, adsorptive centers of CO and active oxygen species increase on the copper-ceria interfaces. The Zr-doped CuO-CeO2 catalyst prepared by hydrothermal method possesses superior catalytic activity and selectivity for selective oxidation of CO at low temperature compared with those of the sample prepared by coprecipitation. The temperature corresponding to 50% CO conversion is only 73 ℃ and the temperature span of total CO conversion is expanded from 120 to 160 ℃.
基金Supported by the National Natural Science Foundation of China(No.2 0 2 770 15 )
文摘A series of TiO 2-XSiO 2[X denotes the molar fraction(%) of silica in the mixed oxides] with different \{n(Ti)\}/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared were characterized by XRD, thermal analysis, FTIR, UV-Vis and SPS. The characterization results of FTIR and UV-Vis spectra show that Ti atoms were gradually changed from octahedral coordination to tetrahedral coordination with the addition of silica, which is not beneficial for obtaining strong Brnsted acidity and higher photocatalytic activity. The photocatalytic activity experiments, which were conducted by using heptane(or SO 2) as the model reactant, showed that TiO 2-SiO 2 containing a suitable amount of silica can exhibit much higher photocatalytic activity than pure TiO 2. The enhanced photocatalytic activity can be attributed to three following factors: (1) smaller crystalline size; (2) higher thermal stability; (3) the new strong Brnsted acidity.
基金PRIN 2006, "Caratterizzazione spettroscopica e morfologica di Me-POSS eterogeneizzati", MEL Chemicals
文摘CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.
基金the National Natural Science Foundation of China (50574046)National Natural Science Foundation of Major Research Projects (90610035)+1 种基金Natural Science Foundation of Yunnan Province (2004E0058Q)High School Doctoral Subject Special Science and Re- search Foundation of Ministry of Education (20040674005)
文摘A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.
基金the financial support of the Department of Science and Engineering Research Board (SERB) (Sanction Order No. CRG/2019/000112)。
文摘Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
基金financially supported by the National Key R&D Program of China (No.2017YFC0210303)National Natural Science Foundation of China (Nos.21806009 and 21677010)+1 种基金China Postdoctoral Science Foundation (Nos.2019T120049 and 2018M631344)Fundamental Research Funds for the Central Universities (No.FRF-TP-18-019A1).
文摘Mn-Ni oxides with different compositions were prepared using standard co-precipitation(CP) and urea hydrolysis-precipitation(UH) methods and optimized for the selective catalytic reduction of nitrogen oxides(NOx) by NH3 at low temperature.Mn((2))Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH(with Mn:Ni molar ratio of 2:1) catalysts showed almost identical selective catalytic reduction(SCR) catalytic activity,with about 96% NOx conversion at 750 C and-99%in the temperature range from 100 to 250℃.X-ray diffraction(XRD) results showed that Mn(2)Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH catalysts crystallized in the form of Mn2NiO4 and MnO2-Mn2NiO4 spinel,respectively.The latter gave relatively good selectivity to N2,which might be due to the presence of the MnO2 phase and high metal-O binding energy,resulting in low dehydrogenation ability.According to the results of various characterization methods,it was found that a high density of surface chemisorbed oxygen species and efficient electron transfer between Mn and Ni in the crystal structure of Mn2NiO4 spinel played important roles in the high-efficiency SCR activity of these catalysts.Mn(2)Ni(1)Ox catalysts presented good resistance to H2O or/and SO2 with stable activity,which benefited from the Mn2NiO4 spinel structure and Eley-Rideal mechanism,with only slight effects from SO2.
基金financially National Key R&D Program of China(No.2022YFA1504800)National Natural Science Foundation of China(Grant No.22325405,22372160,22321002)+1 种基金Liaoning Revitalization Talents Program(XLYC1807207)DICP I202104。
文摘The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.
文摘DBUH-Br_3 catalyzed selective conversion of sulfides to sulfoxides in the presence of H_2O_2 as oxidizing agent is described.The reaction was performed selectively at room temperature and relatively short reaction times.
基金Beijing Municipal Education Committee Program (KM200710017006)
文摘Nanostructure K2NiF4 type oxides La2-xKxCuO4 complex oxides were prepared using the Sol-Gel method, characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), and Scanning Electron Microscopy (SEM). The catalytic activity for soot combustion was evaluated by the Temperature-Programmed Reaction (TPO) technique. The results demonstrated that the substitution quality of K^+ for La^3+ at the A-site would increase the catalytic activities of La2-xKxCuO4 for soot combustion greatly; the substitution quality affected the structure and catalytic activity obviously. The La1.8K0.2CuO4 complex oxides with tetrahedral structures had the best catalytic activity for soot combustion, and the ignition temperature of soot combustion was lowered from 490 to 320 ℃.
基金supported by the Fundamental Research Funds for the Central Universities(BLYJ201509)the Fundamental Research Funds for the Central Universities(TD-JC-2013-3)+4 种基金the Program for New Century Excellent Talents in University(NCET-12-0787)Beijing Nova Programme(Z131109000413013)the National Natural Science Foundation of China(51308045)the Foundation of State Key Laboratory of Coal Conversion(Grant No.J14-15-309)Institute of Coal Chemistry,Chinese Academy of Sciences
文摘In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO_2 adsorption capacity and the multi- cycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO_2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO_2 capture capacity of the adsorbent could be further increased by doping with 15 wt% K_2CO_3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture.
基金supported by the National Natural Science Foundation of China,National Key Research and Development Project (No.2016YFF0204402)the Program for Changjiang Scholars and Innovative Research Team in the University+1 种基金the Fundamental Research Funds for the Central Universitiesthe longterm subsidy mechanism from the Ministry of Finance and the Ministry of Education of PRC
文摘Defect engineering,especially oxygen vacancies(O-vacancies) introduction into metal oxide materials has been proved to be an effective strategy to manipulate their surface electron exchange processes.However,quantitative investigation of O-vacancies on CO2 electroreduction still remains rather ambiguous.Herein,a series of nanoporous tin oxide(SnOx) materials have been prepared by thermal treatment at various temperatures and reaction conditions.The annealing temperature dependent Ovacancies property of the SnOx was revealed and attributed to the balance tunning of the desorption of oxygen species and the continous oxidation of SnOx.The as-prepared nanoporous SnOx with 300℃treatment was found to be highest O-vacant material and showed an impressive CO2 RR activity and selectivity towards the conversion of CO2 into formic acid(up to 88.6%),and superior HCOOH incomplete current density to other samples.The ideal performance of the O-vacancies rich SnOx-300 material can be ascribed to the high delocalized electron density inducing much enhanced adsorption of CO2 with O binding and benefiting the subsequent reduction with high selectively forming of formic acid.
基金supported by the National Natural Science Foundation of China (Nos. 21276179, 21576205)the Program for Changjiang Scholars, Innovative Research Team in University (IRT_15R46)
文摘In this study,Pd-Mg(Al)-LDH/γ-Al2O3 and Pd-Mg(Al)Zr-LDH/γ-Al2O3 precursors were synthesized by impregnating Na2PdCl4 on Mg(Al)-LDH/γ-Al2O3 and Mg(Al)Zr-LDH/γ-Al2O3,and then the precursors were calcinated and reduced to obtain Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalysts.Compared with Pd/γ-Al2O3 catalyst,the hydrogenation efficiency of Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 increased by 15.7%and 24.0%,respectively.Moreover,the stability of Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalyst was also higher than that of Pd/γ-Al2O3.After four runs,the hydrogenation efficiency of Pd/γ-Al2O3 decreased from 12.1 to 10.0 g/L,while that of Pd-Mg(Al)Zr-MMO/γ-Al2O3 decreased from 15.0 to 14.3 g/L.The active aquinones selectivities of all catalysts were almost 99%.The structures of the catalysts were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N2 adsorption–desorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),CO chemisorption analysis,transmission electron microscopy(TEM),temperature-programmed reduction with hydrogen(H2-TPR),and X-ray photoelectron spectroscopy(XPS).The results indicate that the improved catalytic performance is attributed to the stronger interaction between Pd and Mg(Al)Zr-MMO/γ-Al2O3,smaller Pd particle size and higher Pd dispersion.This work develops an effective method to synthesize highly dispersed Pd nanoparticles based on the layered double hydroxides(LDHs)precursor.