The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. Acco...The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.展开更多
CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for...CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.展开更多
A series of TiO 2-XSiO 2[X denotes the molar fraction(%) of silica in the mixed oxides] with different \{n(Ti)\}/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared wer...A series of TiO 2-XSiO 2[X denotes the molar fraction(%) of silica in the mixed oxides] with different \{n(Ti)\}/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared were characterized by XRD, thermal analysis, FTIR, UV-Vis and SPS. The characterization results of FTIR and UV-Vis spectra show that Ti atoms were gradually changed from octahedral coordination to tetrahedral coordination with the addition of silica, which is not beneficial for obtaining strong Brnsted acidity and higher photocatalytic activity. The photocatalytic activity experiments, which were conducted by using heptane(or SO 2) as the model reactant, showed that TiO 2-SiO 2 containing a suitable amount of silica can exhibit much higher photocatalytic activity than pure TiO 2. The enhanced photocatalytic activity can be attributed to three following factors: (1) smaller crystalline size; (2) higher thermal stability; (3) the new strong Brnsted acidity.展开更多
A series of Ceo.sFeo.30Zr0.20O2 catalysts were prepared by different methods (co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrotherrnal method) and character...A series of Ceo.sFeo.30Zr0.20O2 catalysts were prepared by different methods (co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrotherrnal method) and characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and H2-TPR measurements. Potential of the catalysts in the soot oxidation was evaluated in a temperature-programmed oxidation (TPO) apparatus. The results showed that all the Fe3+ and Zr4+ were incor- porated into ceria lattice to form a pure Ce-Fe-Zr-O solid solution for the co-precipitation sample, but two kinds of Fe phases ex- isted in the Ce-Fe-Zr-O catalysts prepared by other methods: Fe3+ incorporated into CeO2 lattice and dispersed Fe2O3 clusters. The free Fe2O3 clusters could improve the activity of catalysts for soot oxidation comparing with the pure Ce-Fe-Zr-O solid solution owing to the synergetic effect between free Fe2O3 and surface oxygen vacancies. In addition, the activity of catalysts strongly relied on the surface reducibility of free Fe2O3 particles. Holding both abundant free Fe2O3 particles and high oxygen vacancy concentration, the hydrothermal Ce0.5Fe0.3Zr0.202 catalyst presented the lowest Ti (251℃, ignition temperature of soot oxidation) and Tm (310 ℃, maximum oxidation rate temperature) for soot combustion (with tight-contact between soot and catalysts) among the five samples. Even after aging at 800 ℃ for 10 h, the Ti and Tm were still relatively low, at 273 and 361 ℃, respectively, indicating high catalytic stability.展开更多
CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of ce...CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of cerium zirconium mixed oxides are the key properties for the automotive catalysts so as to meet the strict emission regulations. In this work, alumina modified CeZrLaNd mixed oxides were prepared by a co-precipitation method. The effects of moisture in precursor and inert N2 atmosphere during calcinations on the structure and properties were investigated by Brunauer-Emmett-Teller(BET) surface area measurements, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), hydrogen temperature-programmed reduction(H_2-TPR), oxygen storage capacity(OSC), Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). The results show that the moisture in precursor during calcinations increases the crystal grain size of the cerium zirconium mixed oxides, improving the thermal stability. And the aged surface area of sample after being calcined at1000 ℃ for 4 h reaches 68.8 m^2/g(5.7% increase compared with the common sample). The inert N2 atmosphere endows a great pore-enlarging effect, which leads to high fresh surface area of 148.9 m2/g(13.5% increase compared with the common sample) and big pore volume of 0.5705 mL/g. The redox and oxygen storage capacity are also improved by inert N2 atmosphere with high OSC value of 241.06μmolO_2/g(41.3% increase compared with the common calcination), due to the abundant formation of the crystal defects and oxygen vacancies.展开更多
In this study,Pd-Mg(Al)-LDH/γ-Al2O3 and Pd-Mg(Al)Zr-LDH/γ-Al2O3 precursors were synthesized by impregnating Na2PdCl4 on Mg(Al)-LDH/γ-Al2O3 and Mg(Al)Zr-LDH/γ-Al2O3,and then the precursors were calcinated and reduc...In this study,Pd-Mg(Al)-LDH/γ-Al2O3 and Pd-Mg(Al)Zr-LDH/γ-Al2O3 precursors were synthesized by impregnating Na2PdCl4 on Mg(Al)-LDH/γ-Al2O3 and Mg(Al)Zr-LDH/γ-Al2O3,and then the precursors were calcinated and reduced to obtain Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalysts.Compared with Pd/γ-Al2O3 catalyst,the hydrogenation efficiency of Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 increased by 15.7%and 24.0%,respectively.Moreover,the stability of Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalyst was also higher than that of Pd/γ-Al2O3.After four runs,the hydrogenation efficiency of Pd/γ-Al2O3 decreased from 12.1 to 10.0 g/L,while that of Pd-Mg(Al)Zr-MMO/γ-Al2O3 decreased from 15.0 to 14.3 g/L.The active aquinones selectivities of all catalysts were almost 99%.The structures of the catalysts were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N2 adsorption–desorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),CO chemisorption analysis,transmission electron microscopy(TEM),temperature-programmed reduction with hydrogen(H2-TPR),and X-ray photoelectron spectroscopy(XPS).The results indicate that the improved catalytic performance is attributed to the stronger interaction between Pd and Mg(Al)Zr-MMO/γ-Al2O3,smaller Pd particle size and higher Pd dispersion.This work develops an effective method to synthesize highly dispersed Pd nanoparticles based on the layered double hydroxides(LDHs)precursor.展开更多
The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X...The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.展开更多
Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effe...Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.展开更多
Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis tempera...Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ), on specific surface area were investigated. The products were characterized by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption-desorption measurements, respectively. The results showed that synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ) had great influence on specific surface area. Under the optimum synthesis conditions, the prepared Ce0.5Zr0.5O2 mixed oxide presented cubic fluorite-type structure and possessed high surface area of 148.6 m2·g^-1 with wormlike pores.展开更多
A series of CexPr1-xO2-δ (x=0, 0.5, 0.9, 1.0) mixed oxide calcined at different temperatures were synthesized by sol-gel method and characterized by Raman, XRD and O2-TPD techniques. When x=0.9, only a cubic phase Ce...A series of CexPr1-xO2-δ (x=0, 0.5, 0.9, 1.0) mixed oxide calcined at different temperatures were synthesized by sol-gel method and characterized by Raman, XRD and O2-TPD techniques. When x=0.9, only a cubic phase CeO2 is observed. When x=0.5, the compound was combined by Pr6O11 and CeO2 mixed oxides. For CexPr1-xO2-δ (x=0.5, 0.9)samples 465 cm-1 Raman peak is attributed to the Raman active F2g mode of CeO2. The broad peak at about 570 cm-1 can be linked to lattice defects resulting in oxygen vacancies. The crystallite size of the samples increased as increasing the calcined temperature. But the increased value of Ce0.9Pr0.1O2-δ and Ce0.5Pr0.5O2-δ is smaller than single CeO2 and Pr6O11 obviously. It reveals that the insertion of Pr atom into the ceria lattice could enhance the sintering resistance and thermal stability of the mixed oxides. Calcination temperatures had great effect on the peak intensity for CeO2 but less effect on Ce0.8Pr0.2O2-δ in Raman spectra, and it may be caused by the colors transformation of the mixed oxides. The result of O2-TPD experiment indicates that the formation of solid solution has elevation the stabilization and thermal stability of the mixed oxides.展开更多
Samples of cerium-manganese oxides supported on modified glass-fiber with different Ce/Mn molar ratios (Ce-Mn/GF) were prepared by an impregnation method and tested for low-temperature (80 180 ℃) selective cataly...Samples of cerium-manganese oxides supported on modified glass-fiber with different Ce/Mn molar ratios (Ce-Mn/GF) were prepared by an impregnation method and tested for low-temperature (80 180 ℃) selective catalytic reduction (SCR) of NO with ammonia. This brand-new technology could remove NO and particles matter from coal-fired flue gas. The surface properties of the catalysts were examined by means of Bmnauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The experimental results showed that the catalyst with a Ce/Mn molar ratio of 0.2 obtained high activity of 87.4% NO conversion at 150 ℃ under a high space velocity of 50000 h1. Deactivation poisoned by SO2 still occurred, but the Ce-Mn/GF(0.2) catalyst performed desirable tolerance to SO2 with decreasing 50% in 40 min and then maintaining at about 30% NO conversion. Characterization results indicated that the excellent low-temperature catalytic activity was related to the high specific surface area, pore structure, and amorphous phase.展开更多
CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (...CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.展开更多
MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 ca...MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.展开更多
A series of LnSrNiO_4(A_2BO_4, Ln=La, Pr, Nd, Sm, Gd) mixed oxides with K_2NiF_4 structure, in which Asite(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physicochemic...A series of LnSrNiO_4(A_2BO_4, Ln=La, Pr, Nd, Sm, Gd) mixed oxides with K_2NiF_4 structure, in which Asite(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physicochemical properties including crystal structure, defect structure, IR spectrum, valence state of Bsite ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 ℃ the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at Asite on catalytic behavior for NO decomposition was elucidated.展开更多
Here some steady-state experiments on oxidation of CO on Pd were performed on a molecular beam apparatus. It is found that the characteristics of the rate of CO_2 formation r versus substrate temperature T are depende...Here some steady-state experiments on oxidation of CO on Pd were performed on a molecular beam apparatus. It is found that the characteristics of the rate of CO_2 formation r versus substrate temperature T are dependent on the ratio P=P_(CO)/P_(O2) in the mixed beam. These characteristics are related to the complicated interactions of co-adsorbed CO and O particles on Pd surface.展开更多
MnOx-CeO2 composite catalysts were prepared by a coprecipitation method and tested for formaldehyde (HCHO) and carbon monoxide (CO) oxidation. X-ray photon spectroscopy (XPS) results indicated that the average o...MnOx-CeO2 composite catalysts were prepared by a coprecipitation method and tested for formaldehyde (HCHO) and carbon monoxide (CO) oxidation. X-ray photon spectroscopy (XPS) results indicated that the average oxidation state of surface Mn species in CeMn composite catalyst was higher compared to the pure MnOx. The enhancement of reactivity for HCHO oxidation was due to the activation of the lattice oxygen species in MnOx by the addition of CeO2, which was confirmed by the H2 temperature programmed reduction (HE-TPR) results. The remarkable enhancement of reactivity for CO oxidation by the addition of CeO2 was due to the active oxygen species generated on the CeO2 surface which directly participated in the reaction.展开更多
MnOx-CeO2 oxides prepared by complexation-combustion method were used for soot oxidation. The highest conversion rate of soot was obtained on a MnOx-CeO2 oxide prepared under mild acid condition of pH = 4, where the o...MnOx-CeO2 oxides prepared by complexation-combustion method were used for soot oxidation. The highest conversion rate of soot was obtained on a MnOx-CeO2 oxide prepared under mild acid condition of pH = 4, where the oxidation temperature corresponding to maximum activity was decreased more than 150 ℃ compared with that of un-catalytic soot oxidation. The structure and property of the catalysts were investigated by X-ray powder diffraction (XRD) and temperature programmed reduction (TPR). The results indicated that there were at least two kinds of Mn species present in MnOx-CeO2 catalysts, i.e. Mn ions within CeO2 lattice and high dispersion MnOx on the surface of CeO2. The presence of Mn ions in the CeO2 lattice improved the oxygen vacancy due to the charge difference, and the CeO2 considerably decreased the reduction temperature of MnOx. The capability to activate oxygen through the oxygen exchange between O2 in gas phase and lattice oxygen species in MnOx-CeO2 oxide contributed to the high catalytic activity for the reaction.展开更多
文摘The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.
基金PRIN 2006, "Caratterizzazione spettroscopica e morfologica di Me-POSS eterogeneizzati", MEL Chemicals
文摘CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.
基金Supported by the National Natural Science Foundation of China(No.2 0 2 770 15 )
文摘A series of TiO 2-XSiO 2[X denotes the molar fraction(%) of silica in the mixed oxides] with different \{n(Ti)\}/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared were characterized by XRD, thermal analysis, FTIR, UV-Vis and SPS. The characterization results of FTIR and UV-Vis spectra show that Ti atoms were gradually changed from octahedral coordination to tetrahedral coordination with the addition of silica, which is not beneficial for obtaining strong Brnsted acidity and higher photocatalytic activity. The photocatalytic activity experiments, which were conducted by using heptane(or SO 2) as the model reactant, showed that TiO 2-SiO 2 containing a suitable amount of silica can exhibit much higher photocatalytic activity than pure TiO 2. The enhanced photocatalytic activity can be attributed to three following factors: (1) smaller crystalline size; (2) higher thermal stability; (3) the new strong Brnsted acidity.
基金Project supported by National Natural Science Foundation of China(51374004,51204083,51174105,51104074)Natural Science Foundation of Yunnan Province(2010ZC018)
文摘A series of Ceo.sFeo.30Zr0.20O2 catalysts were prepared by different methods (co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrotherrnal method) and characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and H2-TPR measurements. Potential of the catalysts in the soot oxidation was evaluated in a temperature-programmed oxidation (TPO) apparatus. The results showed that all the Fe3+ and Zr4+ were incor- porated into ceria lattice to form a pure Ce-Fe-Zr-O solid solution for the co-precipitation sample, but two kinds of Fe phases ex- isted in the Ce-Fe-Zr-O catalysts prepared by other methods: Fe3+ incorporated into CeO2 lattice and dispersed Fe2O3 clusters. The free Fe2O3 clusters could improve the activity of catalysts for soot oxidation comparing with the pure Ce-Fe-Zr-O solid solution owing to the synergetic effect between free Fe2O3 and surface oxygen vacancies. In addition, the activity of catalysts strongly relied on the surface reducibility of free Fe2O3 particles. Holding both abundant free Fe2O3 particles and high oxygen vacancy concentration, the hydrothermal Ce0.5Fe0.3Zr0.202 catalyst presented the lowest Ti (251℃, ignition temperature of soot oxidation) and Tm (310 ℃, maximum oxidation rate temperature) for soot combustion (with tight-contact between soot and catalysts) among the five samples. Even after aging at 800 ℃ for 10 h, the Ti and Tm were still relatively low, at 273 and 361 ℃, respectively, indicating high catalytic stability.
基金Project supported by the China National Key Research and Development Program(2017YFC0211002)
文摘CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of cerium zirconium mixed oxides are the key properties for the automotive catalysts so as to meet the strict emission regulations. In this work, alumina modified CeZrLaNd mixed oxides were prepared by a co-precipitation method. The effects of moisture in precursor and inert N2 atmosphere during calcinations on the structure and properties were investigated by Brunauer-Emmett-Teller(BET) surface area measurements, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), hydrogen temperature-programmed reduction(H_2-TPR), oxygen storage capacity(OSC), Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). The results show that the moisture in precursor during calcinations increases the crystal grain size of the cerium zirconium mixed oxides, improving the thermal stability. And the aged surface area of sample after being calcined at1000 ℃ for 4 h reaches 68.8 m^2/g(5.7% increase compared with the common sample). The inert N2 atmosphere endows a great pore-enlarging effect, which leads to high fresh surface area of 148.9 m2/g(13.5% increase compared with the common sample) and big pore volume of 0.5705 mL/g. The redox and oxygen storage capacity are also improved by inert N2 atmosphere with high OSC value of 241.06μmolO_2/g(41.3% increase compared with the common calcination), due to the abundant formation of the crystal defects and oxygen vacancies.
基金supported by the National Natural Science Foundation of China (Nos. 21276179, 21576205)the Program for Changjiang Scholars, Innovative Research Team in University (IRT_15R46)
文摘In this study,Pd-Mg(Al)-LDH/γ-Al2O3 and Pd-Mg(Al)Zr-LDH/γ-Al2O3 precursors were synthesized by impregnating Na2PdCl4 on Mg(Al)-LDH/γ-Al2O3 and Mg(Al)Zr-LDH/γ-Al2O3,and then the precursors were calcinated and reduced to obtain Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalysts.Compared with Pd/γ-Al2O3 catalyst,the hydrogenation efficiency of Pd-Mg(Al)-MMO/γ-Al2O3 and Pd-Mg(Al)Zr-MMO/γ-Al2O3 increased by 15.7%and 24.0%,respectively.Moreover,the stability of Pd-Mg(Al)Zr-MMO/γ-Al2O3 catalyst was also higher than that of Pd/γ-Al2O3.After four runs,the hydrogenation efficiency of Pd/γ-Al2O3 decreased from 12.1 to 10.0 g/L,while that of Pd-Mg(Al)Zr-MMO/γ-Al2O3 decreased from 15.0 to 14.3 g/L.The active aquinones selectivities of all catalysts were almost 99%.The structures of the catalysts were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N2 adsorption–desorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),CO chemisorption analysis,transmission electron microscopy(TEM),temperature-programmed reduction with hydrogen(H2-TPR),and X-ray photoelectron spectroscopy(XPS).The results indicate that the improved catalytic performance is attributed to the stronger interaction between Pd and Mg(Al)Zr-MMO/γ-Al2O3,smaller Pd particle size and higher Pd dispersion.This work develops an effective method to synthesize highly dispersed Pd nanoparticles based on the layered double hydroxides(LDHs)precursor.
基金financially supported by (i) Suranaree University of Technology,(ii) Thailand Science Research and Innovation,and (iii) National Science,Research and Innovation Fund(project codes 90464 and 160363)。
文摘The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.
文摘Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.
基金Project Supported by Open Fund of Key Laboratory of Catalysis Materials and Science of Hubei Province (CHCL0501)
文摘Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ), on specific surface area were investigated. The products were characterized by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption-desorption measurements, respectively. The results showed that synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ) had great influence on specific surface area. Under the optimum synthesis conditions, the prepared Ce0.5Zr0.5O2 mixed oxide presented cubic fluorite-type structure and possessed high surface area of 148.6 m2·g^-1 with wormlike pores.
文摘A series of CexPr1-xO2-δ (x=0, 0.5, 0.9, 1.0) mixed oxide calcined at different temperatures were synthesized by sol-gel method and characterized by Raman, XRD and O2-TPD techniques. When x=0.9, only a cubic phase CeO2 is observed. When x=0.5, the compound was combined by Pr6O11 and CeO2 mixed oxides. For CexPr1-xO2-δ (x=0.5, 0.9)samples 465 cm-1 Raman peak is attributed to the Raman active F2g mode of CeO2. The broad peak at about 570 cm-1 can be linked to lattice defects resulting in oxygen vacancies. The crystallite size of the samples increased as increasing the calcined temperature. But the increased value of Ce0.9Pr0.1O2-δ and Ce0.5Pr0.5O2-δ is smaller than single CeO2 and Pr6O11 obviously. It reveals that the insertion of Pr atom into the ceria lattice could enhance the sintering resistance and thermal stability of the mixed oxides. Calcination temperatures had great effect on the peak intensity for CeO2 but less effect on Ce0.8Pr0.2O2-δ in Raman spectra, and it may be caused by the colors transformation of the mixed oxides. The result of O2-TPD experiment indicates that the formation of solid solution has elevation the stabilization and thermal stability of the mixed oxides.
基金Project supported by the National High Technology Research and Development Program of China(863 Program)(2008AA05Z305)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(201109)+2 种基金the Master Dissertation Innovation Funded Projects(EG2013015)the Fundamental Research Funds for the Central Universities Special Fund Project(11D11315)Program of Shanghai Subject Chief Scientist(14XD1424700)
文摘Samples of cerium-manganese oxides supported on modified glass-fiber with different Ce/Mn molar ratios (Ce-Mn/GF) were prepared by an impregnation method and tested for low-temperature (80 180 ℃) selective catalytic reduction (SCR) of NO with ammonia. This brand-new technology could remove NO and particles matter from coal-fired flue gas. The surface properties of the catalysts were examined by means of Bmnauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The experimental results showed that the catalyst with a Ce/Mn molar ratio of 0.2 obtained high activity of 87.4% NO conversion at 150 ℃ under a high space velocity of 50000 h1. Deactivation poisoned by SO2 still occurred, but the Ce-Mn/GF(0.2) catalyst performed desirable tolerance to SO2 with decreasing 50% in 40 min and then maintaining at about 30% NO conversion. Characterization results indicated that the excellent low-temperature catalytic activity was related to the high specific surface area, pore structure, and amorphous phase.
基金Project supported by the National "973"Project (2004CB719503)Project supported by the National Natural ScienceFoundation of China (50502023)
文摘CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.
基金Project supported by the National key research and development program(2016YFC0204901)the National Natural Science Foundation of China(21576207)the introduction of talent and technology cooperation plan of Tianjin(14RCGFGX00849)
文摘MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.
文摘A series of LnSrNiO_4(A_2BO_4, Ln=La, Pr, Nd, Sm, Gd) mixed oxides with K_2NiF_4 structure, in which Asite(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physicochemical properties including crystal structure, defect structure, IR spectrum, valence state of Bsite ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 ℃ the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at Asite on catalytic behavior for NO decomposition was elucidated.
基金Project supported by National Natural Science Foundation of China
文摘Here some steady-state experiments on oxidation of CO on Pd were performed on a molecular beam apparatus. It is found that the characteristics of the rate of CO_2 formation r versus substrate temperature T are dependent on the ratio P=P_(CO)/P_(O2) in the mixed beam. These characteristics are related to the complicated interactions of co-adsorbed CO and O particles on Pd surface.
基金supported by the Zhejiang Provincial Natural Science Foundation (Y407020)the Qianjiang Talent Program of Zhejiang Province (QJD0702098)Xinmiao Talent Program of Zhejiang Province (2007R40G2030045)
文摘MnOx-CeO2 composite catalysts were prepared by a coprecipitation method and tested for formaldehyde (HCHO) and carbon monoxide (CO) oxidation. X-ray photon spectroscopy (XPS) results indicated that the average oxidation state of surface Mn species in CeMn composite catalyst was higher compared to the pure MnOx. The enhancement of reactivity for HCHO oxidation was due to the activation of the lattice oxygen species in MnOx by the addition of CeO2, which was confirmed by the H2 temperature programmed reduction (HE-TPR) results. The remarkable enhancement of reactivity for CO oxidation by the addition of CeO2 was due to the active oxygen species generated on the CeO2 surface which directly participated in the reaction.
基金supported by the Key Project of National Natural Science Foundation of China (No. 20603016)Liaoning Provincial Science &Technology Project of China (No. 20071074) for financial support of this research
文摘MnOx-CeO2 oxides prepared by complexation-combustion method were used for soot oxidation. The highest conversion rate of soot was obtained on a MnOx-CeO2 oxide prepared under mild acid condition of pH = 4, where the oxidation temperature corresponding to maximum activity was decreased more than 150 ℃ compared with that of un-catalytic soot oxidation. The structure and property of the catalysts were investigated by X-ray powder diffraction (XRD) and temperature programmed reduction (TPR). The results indicated that there were at least two kinds of Mn species present in MnOx-CeO2 catalysts, i.e. Mn ions within CeO2 lattice and high dispersion MnOx on the surface of CeO2. The presence of Mn ions in the CeO2 lattice improved the oxygen vacancy due to the charge difference, and the CeO2 considerably decreased the reduction temperature of MnOx. The capability to activate oxygen through the oxygen exchange between O2 in gas phase and lattice oxygen species in MnOx-CeO2 oxide contributed to the high catalytic activity for the reaction.