The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMC...The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMCT)catalyst during the selective catalytic reduction of NO_(x) with NH3 under conditions containing H2O and SO_(2) at 150℃.Employing a comprehensive suite of time-resolved analysis and characterization techniques,the evolution of sulfate species was systematically categorized into three stages:initial rapid surface sulfate accumulation,the transformation of surface sulfates to bulk metal sulfates,and partial sulfates decomposition after the removal of H2O and SO_(2).These findings indicate that bulk metal sulfates irreversibly deactivate the catalyst by distorting active component lattices and consuming oxygen vacancies,whereas surface sulfates(including ammonium sulfates and surface-coordinated metal sulfates)cause reversible performance loss through decomposition.Furthermore,the competitive adsorption of H2O and SO_(2) significantly influences the catalytic efficiency,with H2O suppressing SO_(2) adsorption while simultaneously enhancing the formation of Brönsted acid sites.This research underscores the critical role of sulfate dynamics on catalyst performance,revealing the enhanced SO_(2) resistance of the Eley-Rideal mechanism facilitated by the Ce-Ti support relative to the Langmuir-Hinshelwood pathway.Collectively,the study unravels the complex interplay of sulfate dynamics influencing catalyst performance and provides potential approaches to mitigate deactivation in demanding atmospheric conditions.展开更多
Monoclinic Li0.5MnO2 was synthesized by solid state reaction and the spectral and magnetic properties were studied in comparison with those of spinel LiMn2O4. The XRD pattern and Raman spectrum of Li0.5MnO2 are differ...Monoclinic Li0.5MnO2 was synthesized by solid state reaction and the spectral and magnetic properties were studied in comparison with those of spinel LiMn2O4. The XRD pattern and Raman spectrum of Li0.5MnO2 are different from those of LiMn2O4, which indicate the different long-range and short-range crystal structure. XPS result shows the binding energies of 2p3/2 and 2p1/2 in Li0.5MnO2 are located at 642.3 and 653.6 eV, respectively. Through fitting the XPS spectra, the valence state of Mn ion in Li0.5MnO2 coincides with that in LiMn2O4. The high-temperature susceptibility of Li0.5MnO2 can be fitted by Curie-Weiss law whose Curie and Weiss constants are 33 A·m^2.K/(mol·T) and -277(6) K, respectively. Although Li0.5MnO2 shows spin glass ground state, the transition temperature of Li0.5MnO2 is about 9 K lower than that of LiMn2O4.展开更多
A new inorganic-organic hybrid framework microporous material Cd 3(BDC) 0.5(BTC) 2·(DMF)(H 2O)·3DMF·H 3O·H 2O, in which two kinds of carboxylate ligands coordinate with cadmium ions synchronously, ...A new inorganic-organic hybrid framework microporous material Cd 3(BDC) 0.5(BTC) 2·(DMF)(H 2O)·3DMF·H 3O·H 2O, in which two kinds of carboxylate ligands coordinate with cadmium ions synchronously, was obtained under a mild synthesis condition. The titled compound is crystallized in a monoclinic system, space group P2(1)/c with a=1.584 7(7) nm, b=1.426 7(6) nm, c=1.936 3(6) nm, β=113.186(7)°, V=4.024 6(3) nm 3, Z=4, D X=1.947 mg/m 3, M r=1 179.92, μ=1.662 mm -1, F(000)=2 344, R=0.074 8, wR=0.215 1. Three cadmium centers link with each other through BDC or BTC ligand to form a 3-D open framework.展开更多
文摘The problem of water and sulfur poisoning in flue gas atmosphere remains a significant obstacle for low-temperature deNO_(x) catalysts.This study investigated the sulfation mechanism of the CoMn_(2)O_(4)/CeTiO_(x)(CMCT)catalyst during the selective catalytic reduction of NO_(x) with NH3 under conditions containing H2O and SO_(2) at 150℃.Employing a comprehensive suite of time-resolved analysis and characterization techniques,the evolution of sulfate species was systematically categorized into three stages:initial rapid surface sulfate accumulation,the transformation of surface sulfates to bulk metal sulfates,and partial sulfates decomposition after the removal of H2O and SO_(2).These findings indicate that bulk metal sulfates irreversibly deactivate the catalyst by distorting active component lattices and consuming oxygen vacancies,whereas surface sulfates(including ammonium sulfates and surface-coordinated metal sulfates)cause reversible performance loss through decomposition.Furthermore,the competitive adsorption of H2O and SO_(2) significantly influences the catalytic efficiency,with H2O suppressing SO_(2) adsorption while simultaneously enhancing the formation of Brönsted acid sites.This research underscores the critical role of sulfate dynamics on catalyst performance,revealing the enhanced SO_(2) resistance of the Eley-Rideal mechanism facilitated by the Ce-Ti support relative to the Langmuir-Hinshelwood pathway.Collectively,the study unravels the complex interplay of sulfate dynamics influencing catalyst performance and provides potential approaches to mitigate deactivation in demanding atmospheric conditions.
基金National Natural Science Foundation of China(U20A20337)Natural Science foundation of Qinghai Province(2021-ZJ-903)Major science and technology projects of Qinghai Province(2019-GX-168)。
基金Supported by the National Natural Science Foundation of China(No.50672031)the Special Funds for Major State Basic Research Project of China(No.2009CB220104)+1 种基金Program for Changjiang Scholar and Innovative Research Team in Universities of China(No.IRT0625)Jilin Province Project of Research and Development,China(Nos.20060511 and 20075007)
文摘Monoclinic Li0.5MnO2 was synthesized by solid state reaction and the spectral and magnetic properties were studied in comparison with those of spinel LiMn2O4. The XRD pattern and Raman spectrum of Li0.5MnO2 are different from those of LiMn2O4, which indicate the different long-range and short-range crystal structure. XPS result shows the binding energies of 2p3/2 and 2p1/2 in Li0.5MnO2 are located at 642.3 and 653.6 eV, respectively. Through fitting the XPS spectra, the valence state of Mn ion in Li0.5MnO2 coincides with that in LiMn2O4. The high-temperature susceptibility of Li0.5MnO2 can be fitted by Curie-Weiss law whose Curie and Weiss constants are 33 A·m^2.K/(mol·T) and -277(6) K, respectively. Although Li0.5MnO2 shows spin glass ground state, the transition temperature of Li0.5MnO2 is about 9 K lower than that of LiMn2O4.
文摘A new inorganic-organic hybrid framework microporous material Cd 3(BDC) 0.5(BTC) 2·(DMF)(H 2O)·3DMF·H 3O·H 2O, in which two kinds of carboxylate ligands coordinate with cadmium ions synchronously, was obtained under a mild synthesis condition. The titled compound is crystallized in a monoclinic system, space group P2(1)/c with a=1.584 7(7) nm, b=1.426 7(6) nm, c=1.936 3(6) nm, β=113.186(7)°, V=4.024 6(3) nm 3, Z=4, D X=1.947 mg/m 3, M r=1 179.92, μ=1.662 mm -1, F(000)=2 344, R=0.074 8, wR=0.215 1. Three cadmium centers link with each other through BDC or BTC ligand to form a 3-D open framework.