Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal...Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.展开更多
Sodium-ion batteries(SIBs)have attracted significant attention with respect to renewable energy power generation systems because of the abundant reserves of sodium on earth.However,anode materials are presently limite...Sodium-ion batteries(SIBs)have attracted significant attention with respect to renewable energy power generation systems because of the abundant reserves of sodium on earth.However,anode materials are presently limited by low energy density,poor rate performance and inferior cycling stability.In recent years,tin disulfide(SnS_(2))with a particular layered structure has been considered as a promising anode material for SIBs due to its high theoretical capacity and low cost.Herein,a nervoussystem-like structured SnS_(2)/CNTs composite was successfully synthesized via a hydrothermal method.The SnS_(2)sheets were strung with carbon nanotubes(CNTs)to form a hierarchical porous structure,which is effective for electrolyte diffusion and electronic transmission.The large distance of the(001)plane(0.5899 nm)of SnS_(2)favors Na+insertion-extraction dynamics.Benefitting from these structural characteristics,SnS_(2)/CNTs electrodes exhibit high specific capacity,excellent rate performance and superior cycling stability.A high charge capacity of 642 mAh·g^(-1)was released at 0.2 A·g^(-1),and then,a high reversible capacity of 427 mAh·g^(-1)was retained after 100 cycles.Even charged at 2 A·g^(-1),the SnS_(2)/CNTS electrode maintained a capacity of 282 mAh·g^(-1).The nervous-system-like structure of the SnS_(2)/CNTs composite provides a novel strategy for the development of SIBs with high electrochemical performance.展开更多
Molybdenum disilicide(MoSi_2) based composites with various contents of carbon nanotubes(CNTs) were fabricated by spark plasma sintering(SPS) in vacuum under a pressure of 25 MPa.The composites obtained under a sinter...Molybdenum disilicide(MoSi_2) based composites with various contents of carbon nanotubes(CNTs) were fabricated by spark plasma sintering(SPS) in vacuum under a pressure of 25 MPa.The composites obtained under a sintering temperature of 1500 °C and time of 10 min exhibited optimum mechanical properties at room temperature in terms of fracture toughness and transverse rupture strength.MoSi_2 based composite with 6.0% CNTs(volume fraction) had the highest fracture toughness,transverse rupture strength and hardness,which were improved by about 25.7%,51.5% and 24.4% respectively,as compared with pure MoSi_2.A Mo_(4.8)Si_3C_(0.6) phase was detected in CNTs/MoSi_2 composites by both X-ray diffraction(XRD) method and microstructure analysis with scanning electron microscopy(SEM).It is believed that the fine grains and well dispersed small Mo_(4.8)Si_3C_(0.6) particles had led to a higher hardness and strength of CNTs/MoSi_2 composites because of their particle pullout,crack deflection and micro-bridging effects.展开更多
Materials that can efficiently absorb electromagnetic waves(EMWs)are required to deal with electromagnetic pollution.Structure design appears to be an efficient way to improve the EMW-absorption performance of such ma...Materials that can efficiently absorb electromagnetic waves(EMWs)are required to deal with electromagnetic pollution.Structure design appears to be an efficient way to improve the EMW-absorption performance of such materials,particularly when adjustment of the constitution or mixing ratio is limited.In this study,bowl-like and honeycomb titanium dioxide/carbon nanotube(TiO_(2)/CNT)composites with different CNT contents were fabricated using the methods of hierarchical and mixing vacuum-assisted filtration,respectively.Compared to the honeycomb structure,the bowl-like structure simultaneously facilitated greater interfacial polarization and conduction loss in favor of dielectric polarization,and augmented multiple reflections.The high porosity of the honeycomb structure was conducive to optimizing the impedance matching characteristics.The bowl-like TiO_(2)/CNT composite exhibited a minimum reflection loss(RL_(min))of-38.6 dB(1.5 mm)with a wide effective absorption band(EAB;<-10 dB)of4.2 GHz,while the honeycomb TiO_(2)/CNT composite showed an RLminof-34.8 dB(2.1 mm)with an EAB of 4.3 GHz.The required mixing ratio in the matrix was only 15 wt%,outperforming that of the most closely related composites.Thus,both the bowl-like and honeycomb TiO_(2)/CNT composites are ideal candidates for light-weight and highly efficient EMW-absorbing materials.展开更多
1 Introduction Supercapacitor also called electrochemical capacitor,has become one of the most promising energy storage devices due to its long service life,great power density,high energy density,green environmental ...1 Introduction Supercapacitor also called electrochemical capacitor,has become one of the most promising energy storage devices due to its long service life,great power density,high energy density,green environmental protection(Simon et al,2008;Ma et al,2013).Based on the charge storage mechanisms,Supercapacitors can be divided into展开更多
The nanometer MnO2 has outstanding electrochemical performance theoretically, but it is not suitable for actual utilization, which may result in capacity decrease and resource waste. In this study we have utilized the...The nanometer MnO2 has outstanding electrochemical performance theoretically, but it is not suitable for actual utilization, which may result in capacity decrease and resource waste. In this study we have utilized the characterizations of the nanometer material, synthesized a type of nanometer α-MnO2 through KMnO4 and KNO3 with hydrothermal method, and mixed the products into micron electrolytic manganese dioxide (EMD) to enhance the electrochemical performance of the electrode.The cyclic voltammogram and galvanostatical discharge measurements of the samples were investigated. It is found that the 50﹪ nanometer MnO2 mixed electrode has the best electrochemical performance. The electrochemical performance improvement mechanism of the sample nanometer MnO2 mixed into micron EMD was discussed. With the existence of electrolyte, the nanometer MnO2 particles filled into the interspaces of the micron EMD particles, the mass and charge transfer conditions of the electrode reaction were improved, and the electrode polarization was diminished.展开更多
基金Projects(21071153,20976198)supported by the National Natural Science Foundation of China
文摘Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance.
基金financially supported by the National Natural Science Foundation of China(Nos.51704124,51762017 and 11602094)the Key Planned Science and Technology Project of Xiangxi Tujia&Miao Autonomous Prefecture(No.2018GX2001)+2 种基金the Program of Youth Talent Support for Hunan Province(No.2018RS3098)the Key Program of Hunan Provincial Education Department(No.18A285)the Natural Science Foundation of Hunan Province(Nos.2018JJ3415 and 2019JJ50485)。
文摘Sodium-ion batteries(SIBs)have attracted significant attention with respect to renewable energy power generation systems because of the abundant reserves of sodium on earth.However,anode materials are presently limited by low energy density,poor rate performance and inferior cycling stability.In recent years,tin disulfide(SnS_(2))with a particular layered structure has been considered as a promising anode material for SIBs due to its high theoretical capacity and low cost.Herein,a nervoussystem-like structured SnS_(2)/CNTs composite was successfully synthesized via a hydrothermal method.The SnS_(2)sheets were strung with carbon nanotubes(CNTs)to form a hierarchical porous structure,which is effective for electrolyte diffusion and electronic transmission.The large distance of the(001)plane(0.5899 nm)of SnS_(2)favors Na+insertion-extraction dynamics.Benefitting from these structural characteristics,SnS_(2)/CNTs electrodes exhibit high specific capacity,excellent rate performance and superior cycling stability.A high charge capacity of 642 mAh·g^(-1)was released at 0.2 A·g^(-1),and then,a high reversible capacity of 427 mAh·g^(-1)was retained after 100 cycles.Even charged at 2 A·g^(-1),the SnS_(2)/CNTS electrode maintained a capacity of 282 mAh·g^(-1).The nervous-system-like structure of the SnS_(2)/CNTs composite provides a novel strategy for the development of SIBs with high electrochemical performance.
基金Project(51371155)supported by the National Natural Science Foundation of ChinaProject(2014H0046)supported by the Key Science and Technology Project of Fujian Province,China+2 种基金Project(3502Z20143036)supported by the Scientific Research Fund of Xiamen,ChinaProject(JB13149)supported by the Education Department Science and Technology Project of Fujian Province,ChinaProject(2012D131)supported by the Natural Science Foundation Guidance Project of Fujian Province,China
文摘Molybdenum disilicide(MoSi_2) based composites with various contents of carbon nanotubes(CNTs) were fabricated by spark plasma sintering(SPS) in vacuum under a pressure of 25 MPa.The composites obtained under a sintering temperature of 1500 °C and time of 10 min exhibited optimum mechanical properties at room temperature in terms of fracture toughness and transverse rupture strength.MoSi_2 based composite with 6.0% CNTs(volume fraction) had the highest fracture toughness,transverse rupture strength and hardness,which were improved by about 25.7%,51.5% and 24.4% respectively,as compared with pure MoSi_2.A Mo_(4.8)Si_3C_(0.6) phase was detected in CNTs/MoSi_2 composites by both X-ray diffraction(XRD) method and microstructure analysis with scanning electron microscopy(SEM).It is believed that the fine grains and well dispersed small Mo_(4.8)Si_3C_(0.6) particles had led to a higher hardness and strength of CNTs/MoSi_2 composites because of their particle pullout,crack deflection and micro-bridging effects.
基金financially supported by the National Natural Science Foundation of China(No.51802289)the Science Foundation for the Excellent Youth Scholars of Henan Province(No.212300410089)+2 种基金the Support Program for Scientific and Technological Innovation Talents of Higher Education in Henan Province(No.21HASTIT004)the China Postdoctoral Science Foundation(No.2019M661352)the Natural Science Basic Research Program in Shaanxi Province(No.202032100067)。
文摘Materials that can efficiently absorb electromagnetic waves(EMWs)are required to deal with electromagnetic pollution.Structure design appears to be an efficient way to improve the EMW-absorption performance of such materials,particularly when adjustment of the constitution or mixing ratio is limited.In this study,bowl-like and honeycomb titanium dioxide/carbon nanotube(TiO_(2)/CNT)composites with different CNT contents were fabricated using the methods of hierarchical and mixing vacuum-assisted filtration,respectively.Compared to the honeycomb structure,the bowl-like structure simultaneously facilitated greater interfacial polarization and conduction loss in favor of dielectric polarization,and augmented multiple reflections.The high porosity of the honeycomb structure was conducive to optimizing the impedance matching characteristics.The bowl-like TiO_(2)/CNT composite exhibited a minimum reflection loss(RL_(min))of-38.6 dB(1.5 mm)with a wide effective absorption band(EAB;<-10 dB)of4.2 GHz,while the honeycomb TiO_(2)/CNT composite showed an RLminof-34.8 dB(2.1 mm)with an EAB of 4.3 GHz.The required mixing ratio in the matrix was only 15 wt%,outperforming that of the most closely related composites.Thus,both the bowl-like and honeycomb TiO_(2)/CNT composites are ideal candidates for light-weight and highly efficient EMW-absorbing materials.
基金financial support from the National Natural Science Foundation of China(51274015)National Program on Key Basic Research Project (973 Program) (2014CB846000)Test Fund of Peking University
文摘1 Introduction Supercapacitor also called electrochemical capacitor,has become one of the most promising energy storage devices due to its long service life,great power density,high energy density,green environmental protection(Simon et al,2008;Ma et al,2013).Based on the charge storage mechanisms,Supercapacitors can be divided into
基金This paper is supported by Chenguang Program for Young Scientists of Wuhan, Hubei Province (No. 20065004116-22).
文摘The nanometer MnO2 has outstanding electrochemical performance theoretically, but it is not suitable for actual utilization, which may result in capacity decrease and resource waste. In this study we have utilized the characterizations of the nanometer material, synthesized a type of nanometer α-MnO2 through KMnO4 and KNO3 with hydrothermal method, and mixed the products into micron electrolytic manganese dioxide (EMD) to enhance the electrochemical performance of the electrode.The cyclic voltammogram and galvanostatical discharge measurements of the samples were investigated. It is found that the 50﹪ nanometer MnO2 mixed electrode has the best electrochemical performance. The electrochemical performance improvement mechanism of the sample nanometer MnO2 mixed into micron EMD was discussed. With the existence of electrolyte, the nanometer MnO2 particles filled into the interspaces of the micron EMD particles, the mass and charge transfer conditions of the electrode reaction were improved, and the electrode polarization was diminished.