The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi...The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.展开更多
The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and opti...The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.展开更多
In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile t...In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.展开更多
An effective parameter in the miscible-CO_2 enhanced oil recovery procedure is the minimum miscibility pressure(MMP)defined as the lowest pressure that the oil in place and the injected gas into reservoir achieve misc...An effective parameter in the miscible-CO_2 enhanced oil recovery procedure is the minimum miscibility pressure(MMP)defined as the lowest pressure that the oil in place and the injected gas into reservoir achieve miscibility at a given temperature. Flue gases released from power plants can provide an available source of CO_2,which would otherwise be emitted to the atmosphere, for injection into a reservoir. However, the costs related to gas extraction from flue gases is potentially high. Hence, greater understanding the role of impurities in miscibility characteristics between CO_2 and reservoir fluids helps to establish which impurities are tolerable and which are not. In this study, we simulate the effects of the impurities nitrogen(N_2), methane(C_1), ethane(C_2) and propane(C_3) on CO_2 MMP. The simulation results reveal that,as an impurity, nitrogen increases CO_2–oil MMP more so than methane. On the other hand, increasing the propane(C_3)content can lead to a significant decrease in CO_2 MMP, whereas varying the concentrations of ethane(C_2) does not have a significant effect on the minimum miscibility pressure of reservoir crude oil and CO_2 gas. The novel relationships established are particularly valuable in circumstances where MMP experimental data are not available.展开更多
Liquid crystalline polymer-polyamide 66 (LCP/PA66) blends were compounded by using a Brabender mixing followed by compression moulding. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based o...Liquid crystalline polymer-polyamide 66 (LCP/PA66) blends were compounded by using a Brabender mixing followed by compression moulding. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based on 30% (molar fraction ) of p-amino benzoic acid (ABA ) and 70% (molar fraction) of poly (ethylene terephthalate) (PET). The LCP/PA66 blends were investigated in terms of the thermal and dynamic mechanical properties. It was found that PA66 and LCP components of the blends are miscible in the molten state, but are partially miscible in the solid state. The inclusion of the semi-flexible LCP into PA66 retards the crystallization rate of PA66. Furthermore, the melting temperature and the degree of crystallinity of PA66 are reduced considerably due to the LCP addition.展开更多
A model has been developed to describe the microstructure evolution in the atomized droplets of Cu-Fe alloy during cooling through the metastable miscibility gap. Calculations have been performed for Cu85Fe15 alloy to...A model has been developed to describe the microstructure evolution in the atomized droplets of Cu-Fe alloy during cooling through the metastable miscibility gap. Calculations have been performed for Cu85Fe15 alloy to investigate the process of liquid-liquid phase transformation. The numerical results indicate that the minority phase droplets are nucleated in a temperature region around the peak of the supersaturation. The average radius of the Fe-rlch droplets decreases and the number density of the minority phase droplets increases with decreasing the atomized droplet size. The simulated results were compared with the experimental ones. The kinetic process of the liquid-liquid phase transformation was discussed in detail.展开更多
Positron annihilation spectroscopy(PAS)was utilized to investigate the relationship between the free-volume hole properties and miscibility of dynamically vulcanized EPDM/PP blend.The results showed that the noncrysta...Positron annihilation spectroscopy(PAS)was utilized to investigate the relationship between the free-volume hole properties and miscibility of dynamically vulcanized EPDM/PP blend.The results showed that the noncrystalline region of PP and EPDM in the blend was partially miscible and the miscibility of the blend became worse when the weight percent of EPDM was<50%.This was also demonstrated by DMTA and mechanical properties of the blends with various compositions.展开更多
Poly(hydroxybutyrate)/poly(vinyl alcohol)(PHB/PVA)blends plasticized with glycerol were prepared by melt blending of PHB and glycerol plasticized PVA.The PHB/PVA-glycerol compositions were 90:10,75:25 and 50:50 w/w,be...Poly(hydroxybutyrate)/poly(vinyl alcohol)(PHB/PVA)blends plasticized with glycerol were prepared by melt blending of PHB and glycerol plasticized PVA.The PHB/PVA-glycerol compositions were 90:10,75:25 and 50:50 w/w,being the concentration of glycerol in the PVA mixture of 10 wt%.The blends were characterized by infrared spectroscopy,dynamic-mechanical thermal analysis,and scanning electron microscope of the fragile fractured surface.The results showed one single phase blend,indicating miscibility corroborated by the presence of a single glass transition temperature.The blending method proved to be an efficient way to tune PHB properties keeping its biodegradable nature since both PVA and glycerol are fully biodegradable materials.展开更多
The influence of solvent on the miscibility of polystyrene(PS) and poly(styrene-co-acrylonitrile)(PSAN) blends has been investigated viscometrically. The miscibility of different PS/PSAN blend(30/70, 50/50 and ...The influence of solvent on the miscibility of polystyrene(PS) and poly(styrene-co-acrylonitrile)(PSAN) blends has been investigated viscometrically. The miscibility of different PS/PSAN blend(30/70, 50/50 and 70/30) compositions in acetone and benzene at 20, 30, and 40 °C was investigated on the basis of the sign of Chee(ΔB and ), and Sun’s(α) criteria. The values of these parameters were evaluated from the analyses of reduced viscosity data of binary(solvent/polymer) and ternary(solvent/polymer1/polymer2) polymer systems. These investigations indicated partial miscibility for both the blend systems. However, PS/PSAN/acetone blend system showed somewhat higher partial miscibility than the PS/PSAN/Benzene blend system highlighting the impact of solvent over the polymer-polymer interactions and hence their miscibility. The results obtained through viscometry were also corroborated by the refractive index and density results for the blends under study. The effect of temperature on miscibility in both the cases was almost negligible.展开更多
In this paper the miscibility of poly (ε-caprolactone) (PCL) and aliphatic polycarbonate (APC) is studied by using DSC. The results show that PCL and APC are miscible in all ranges of composition. The interaction par...In this paper the miscibility of poly (ε-caprolactone) (PCL) and aliphatic polycarbonate (APC) is studied by using DSC. The results show that PCL and APC are miscible in all ranges of composition. The interaction parameter between the polymers is calculated from the melting point depression data. Using optical microscope, the shapes of the PCL spherulites in the blends are observed.展开更多
Miscibility, isothermal crystallization kinetics, and morphology of poly(L-lactide)/poly(trimethylene carbonate) (PLLA/PTMC) crystalline/amorphous blends were studied by differential scanning calorimetry (DSC)...Miscibility, isothermal crystallization kinetics, and morphology of poly(L-lactide)/poly(trimethylene carbonate) (PLLA/PTMC) crystalline/amorphous blends were studied by differential scanning calorimetry (DSC) and optical microscopy (OM). The heterogeneity of OM images and an unchanged glass transition temperature showed that PLLA was immiscible with PTMC. During isothermal crystallization, the crystallization rate of PLLA improved when the PTMC content was low (≤ 20%). However, when the PTMC content was high (≥ 30%), the crystallization rate decreased significantly. The reason of these nonlinear changes in crystal kinetics was analyzed according to the nucleation and growth process by virtue of a microscope heating stage. The isothermal crystallization morphologies of the blends were also studied by polarized optical microscopy and the results confirmed the conclusions obtained from crystallization kinetics.展开更多
The miscibility and phase behavior of the blends of polyoxymethylene (POM)/Novolak were investigated by the cloud point method, which showed that the POM/Novolak blends exhibited a lower critical solution temperature....The miscibility and phase behavior of the blends of polyoxymethylene (POM)/Novolak were investigated by the cloud point method, which showed that the POM/Novolak blends exhibited a lower critical solution temperature. The melting point of POM decreased when diluted with Novolak. From the melting temperature depression of POM, a negative interaction parameter (x) between POM and Novolak was obtained. The IR spectrum revealed that the miscibility between POM and Novolak was caused by the specific interaction between the OH groups of Novolak and the ether oxygen atoms of POM. The morphology of the blends investigated by polarized light microscopy showed that the size of spherulites of POM was sharply decreased by its mixing with Novolak. This suggests that Novolak be used as a compatibilizer for POM.展开更多
Miscibility and crystallization have been studied for polypropylene-polyethylene and polyethylene-polyethyleneblends. In the case of the polypropylene blends the composition of interest is 20% polypropylene. At this c...Miscibility and crystallization have been studied for polypropylene-polyethylene and polyethylene-polyethyleneblends. In the case of the polypropylene blends the composition of interest is 20% polypropylene. At this composition thepolypropylene has been found to be soluble in linear low density polyethylene but insoluble in high, low and very lowdensity polyethylenes. The miscibility has been concluded from the crystallization kinetics and polarised optical microscopywith a hot stage. Polyethylene-polyethylene blends have been formed from polymers with similar average branching contentbut where they have different melting temperatures. Important consequences are to introduce long branches into apolyethylene that only has short branches, and to modify the morphology of a polyethylenes so that haze, gloss and strainhardening are improved. Polyethylene blends must be developed after careful consideration of the branch content anddistribution within each of the constituents. It is not sufficient to simply blend polyethylenes, with the desired range ofproperties, without regard to the miscibility of the blend composition.展开更多
Two kinds of experimental methods were tried in the present work:(i)the powder metallurgy method combined with differential thermal analysis(DTA)to determine the metastable liquidus miscibility gap for a Fe–Cu binary...Two kinds of experimental methods were tried in the present work:(i)the powder metallurgy method combined with differential thermal analysis(DTA)to determine the metastable liquidus miscibility gap for a Fe–Cu binary system and(ii)the high-temperature melting method combined with isothermal treatment to determine the stable liquidus miscibility gap for a Fe–Sn binary system.The experimental method was adopted according to the characteristics of the liquidus miscibility gap of the specific system.Using the powder metallurgy method,a uniform microstructure morphology and chemical composition was obtained in the DTA specimen,and the phase-separation temperature of the supercooled metastable liquid was measured.The isothermal treatment was applied for the samples inside the stable liquidus miscibility gap;here,equilibrated compositions were reached,and a layered morphology was formed after rapid cooling.The liquid miscibility gaps of the Fe–Cu and Fe–Sn binary systems were measured,and the peak temperatures of the corresponding miscibility gaps were determined to be about 1417°C at x(Cu)=0.465 at%and 1350°C at x(Sn)=0.487 at%,respectively.On the basis of the experimental results,both the Fe–Cu and the Fe–Sn binary systems were thermodynamically assessed.展开更多
Poly (phthalazinone ether sulfone ketone) (PPESK) was melt blended with bisphenol-A polysulfone oligomer (O-PSF) to produce a thermoplastic polymer blends. The miscibility, thermal stability, rheological and mechanica...Poly (phthalazinone ether sulfone ketone) (PPESK) was melt blended with bisphenol-A polysulfone oligomer (O-PSF) to produce a thermoplastic polymer blends. The miscibility, thermal stability, rheological and mechanical properties of the blends were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and capillary rheometry. The blends showed single Tg over the composition range and possess homogeneous microstructure. The addition of O-PSF slightly affected the thermal properties of the blends. PSF oligomer, as a processing aid, could markedly improve the processability of the PPESK. In addition, the mechanical properties of the blends were increased, to some degree, by adding O-PSF.展开更多
The blends of novel branched poly(ethylene succinate)(b-PES) and poly(vinyl phenol)(PVPh) were prepared v ia a solution and casting method. The miscibility, melting behavior, spherulitic morphology and growth, and cry...The blends of novel branched poly(ethylene succinate)(b-PES) and poly(vinyl phenol)(PVPh) were prepared v ia a solution and casting method. The miscibility, melting behavior, spherulitic morphology and growth, and crystal structure of b-PES/PVPh blends were investigated in detail. PVPh was miscible with b-PES over the whole compositions as evidenced by the single composition dependent glass transition temperature. Double melting behavior occurred in neat b-PES and b-PES/PVPh 85/15 blend after isothermal melt crystallization, which may be explained by the melting, recrystallization, and remelting mechanism. In addition, the depression of equilibrium melting point of an 85/15 blend was also found, confirming again the miscibility between the two components. The addition of PVPh caused the decrease of nucleation density and crystal growth rates of b-PES spherulites in the blend. The crystal structure of b- PES was unchanged before and after blending;moreover, the crystallinity of b-PES decreased slightly in the blend.展开更多
The metallic liquid with miscibility gap has been widely explored recently because of the increasing plastic deformation ability of phase-separated metallic glass. However, the poor glass-forming ability limits its ap...The metallic liquid with miscibility gap has been widely explored recently because of the increasing plastic deformation ability of phase-separated metallic glass. However, the poor glass-forming ability limits its application as the structural materials due to the positive mixing enthalpy of the two elements. Since high pressure is in favor of the formation of the glass, the effect of pressure on the structural and dynamical heterogeneity of phase-separated CusoAgso liquid is inves- tigated by molecular dynamics simulation in the pressure range of 0-16 GPa. The results clearly show that the pressure promotes the formation of metallic glass by increasing the number of fivefold symmetry cluster W and dynamical relaxation time; meanwhile, the liquid-liquid phase separation is also enhanced, and the homogenous atom pAlrs show stronger interaction than heterogeneous atom pAlrs with increasing pressure. The dynamical heterogeneity is related to the formation of fivefold symmetry clusters. The lower growing rate of W at higher pressure with decreasing temperature corresponds to the slow increase in dynamical heterogeneity. The pressured glass with miscibility gap may act as a candidate glass with improved plastic formation ability. The results explore the structural and dynamical heterogeneity of phase-separated liquid at atomic level.展开更多
In this work, polypropylene (PP)/octene-ethylene copolymer (POE) blends were injection-molded using the so- called dynamic packing injection technique, which imposed oscillatory shear on the gradually cooling melt...In this work, polypropylene (PP)/octene-ethylene copolymer (POE) blends were injection-molded using the so- called dynamic packing injection technique, which imposed oscillatory shear on the gradually cooling melt during the packing solidification stage. In this way, the effect of shear on the size distribution and anisotropy of the minor phase droplets could be investigated. Besides, by using two kinds of POE with different octene contents, the effect of component miscibility was also studied. The results show that the droplet size is mainly determined by composition and miscibility, and droplet anisotropy is mainly determined by droplet size and shear. Most importantly, under the same processing condition, droplet anisotropy increases with droplet size, and there seems a linear fit between them, disregarding the miscibility factor. These results may provide guidance for preparing polymer blends with desired properties by tailoring their phase morphologies.展开更多
The "sliding graft copolymer" (SGC), in which many linear poly-ε-caprolactone (PCL) side chains are bound to cyclodextrin rings of a polyrotaxane (PR), was prepared and employed to toughen diglycidyl ether of...The "sliding graft copolymer" (SGC), in which many linear poly-ε-caprolactone (PCL) side chains are bound to cyclodextrin rings of a polyrotaxane (PR), was prepared and employed to toughen diglycidyl ether of bisphenol A (DGEBA) based epoxy resin. The aim of the work is to understand the effect of SGC on the miscibility, morphology, thermal behavior, curing reaction and mechanical performance of the cured systems. From differential scanning calorimetry (DSC) analysis and dynamic mechanical thermal analysis (DMTA) of DGEBA/SGC thermosetting blends, it is found that DGEBA and SGC are miscible in the amorphous state. Fourier transform infrared spectroscopy (FTIR) suggested that the miscibility between SGC and DGEBA is due to the existence of intermolecular specific interactions (viz. hydrogen bonding). The impact strength is improved by 4 times for DGEBA/SGC (80/20) blends compared with that of the unmodified system. The increase in toughness of SGC-modified thermosets can be explained by the effect of intermolecular specific interactions of SGC with DGEBA, which is beneficial to induce the plastic deformation of matrix. This is the first report on utilizing this novel supramolecular polymer to toughen rigid epoxy matrix.展开更多
A theoretical calculation of the miscibility gap with considering the mismatch strain and elastic parameters was performed for the GaN1-xPx ternary alloys on (0001) GaN/sapphire substrates based on the strictly regula...A theoretical calculation of the miscibility gap with considering the mismatch strain and elastic parameters was performed for the GaN1-xPx ternary alloys on (0001) GaN/sapphire substrates based on the strictly regular solution model. The calculated results show that the boundary of the spinodal isotherm shifts from x=0.06 to x=0.25 at the growth temperature of 1200 K as the strain factor increases from 0 to 1, indicating that the strain in the GaN1-xPx layers can suppress the phase separation. Meanwhile, with the increase of the effective elastic parameters of GaN and GaP, the available maximum P content also increases slightly at the growing temperature.展开更多
基金Supported by the PetroChina Science and Technology Project(2023ZG18).
文摘The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.
基金ACKNOWLEDGMENT This work was supported by the Key Science Foundation of Education Ministry of China and the Anhui Science Foundation.
文摘The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.
基金This work was supported by the National Natural Science Foundation of China(Nos.270274049 and 220374051).
文摘In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.
文摘An effective parameter in the miscible-CO_2 enhanced oil recovery procedure is the minimum miscibility pressure(MMP)defined as the lowest pressure that the oil in place and the injected gas into reservoir achieve miscibility at a given temperature. Flue gases released from power plants can provide an available source of CO_2,which would otherwise be emitted to the atmosphere, for injection into a reservoir. However, the costs related to gas extraction from flue gases is potentially high. Hence, greater understanding the role of impurities in miscibility characteristics between CO_2 and reservoir fluids helps to establish which impurities are tolerable and which are not. In this study, we simulate the effects of the impurities nitrogen(N_2), methane(C_1), ethane(C_2) and propane(C_3) on CO_2 MMP. The simulation results reveal that,as an impurity, nitrogen increases CO_2–oil MMP more so than methane. On the other hand, increasing the propane(C_3)content can lead to a significant decrease in CO_2 MMP, whereas varying the concentrations of ethane(C_2) does not have a significant effect on the minimum miscibility pressure of reservoir crude oil and CO_2 gas. The novel relationships established are particularly valuable in circumstances where MMP experimental data are not available.
基金Supported by the National Natural Science Foundation of China.
文摘Liquid crystalline polymer-polyamide 66 (LCP/PA66) blends were compounded by using a Brabender mixing followed by compression moulding. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based on 30% (molar fraction ) of p-amino benzoic acid (ABA ) and 70% (molar fraction) of poly (ethylene terephthalate) (PET). The LCP/PA66 blends were investigated in terms of the thermal and dynamic mechanical properties. It was found that PA66 and LCP components of the blends are miscible in the molten state, but are partially miscible in the solid state. The inclusion of the semi-flexible LCP into PA66 retards the crystallization rate of PA66. Furthermore, the melting temperature and the degree of crystallinity of PA66 are reduced considerably due to the LCP addition.
基金the finan cial supports from the National Natural Science Foundation of China(Grant Nos.50271076,50371092 , 50395104)the Sino-Germany Science Foundation(GZ032/1) the Natural Science Foundation of Liaoning Province of China.
文摘A model has been developed to describe the microstructure evolution in the atomized droplets of Cu-Fe alloy during cooling through the metastable miscibility gap. Calculations have been performed for Cu85Fe15 alloy to investigate the process of liquid-liquid phase transformation. The numerical results indicate that the minority phase droplets are nucleated in a temperature region around the peak of the supersaturation. The average radius of the Fe-rlch droplets decreases and the number density of the minority phase droplets increases with decreasing the atomized droplet size. The simulated results were compared with the experimental ones. The kinetic process of the liquid-liquid phase transformation was discussed in detail.
基金This work was financially supported by 863 Programme of China No.863-715-012-0160
文摘Positron annihilation spectroscopy(PAS)was utilized to investigate the relationship between the free-volume hole properties and miscibility of dynamically vulcanized EPDM/PP blend.The results showed that the noncrystalline region of PP and EPDM in the blend was partially miscible and the miscibility of the blend became worse when the weight percent of EPDM was<50%.This was also demonstrated by DMTA and mechanical properties of the blends with various compositions.
文摘Poly(hydroxybutyrate)/poly(vinyl alcohol)(PHB/PVA)blends plasticized with glycerol were prepared by melt blending of PHB and glycerol plasticized PVA.The PHB/PVA-glycerol compositions were 90:10,75:25 and 50:50 w/w,being the concentration of glycerol in the PVA mixture of 10 wt%.The blends were characterized by infrared spectroscopy,dynamic-mechanical thermal analysis,and scanning electron microscope of the fragile fractured surface.The results showed one single phase blend,indicating miscibility corroborated by the presence of a single glass transition temperature.The blending method proved to be an efficient way to tune PHB properties keeping its biodegradable nature since both PVA and glycerol are fully biodegradable materials.
基金supported by the Higher Education Commission,Islamabad,Pakistan in the form of an Indigenous PhD Fellowship Phase-IV to Zafarullah Khan Marwat.Zafarullah Khan Marwat is also grateful to the Higher Education Department(Colleges)Peshawar Khyber Pakhtunkhwa for grant of study leave for PhD Studies
文摘The influence of solvent on the miscibility of polystyrene(PS) and poly(styrene-co-acrylonitrile)(PSAN) blends has been investigated viscometrically. The miscibility of different PS/PSAN blend(30/70, 50/50 and 70/30) compositions in acetone and benzene at 20, 30, and 40 °C was investigated on the basis of the sign of Chee(ΔB and ), and Sun’s(α) criteria. The values of these parameters were evaluated from the analyses of reduced viscosity data of binary(solvent/polymer) and ternary(solvent/polymer1/polymer2) polymer systems. These investigations indicated partial miscibility for both the blend systems. However, PS/PSAN/acetone blend system showed somewhat higher partial miscibility than the PS/PSAN/Benzene blend system highlighting the impact of solvent over the polymer-polymer interactions and hence their miscibility. The results obtained through viscometry were also corroborated by the refractive index and density results for the blends under study. The effect of temperature on miscibility in both the cases was almost negligible.
基金The subject supported by National Natural Science Foundation of China
文摘In this paper the miscibility of poly (ε-caprolactone) (PCL) and aliphatic polycarbonate (APC) is studied by using DSC. The results show that PCL and APC are miscible in all ranges of composition. The interaction parameter between the polymers is calculated from the melting point depression data. Using optical microscope, the shapes of the PCL spherulites in the blends are observed.
基金financially supported by the Shandong Province High School Science & Technology Fund Planning Project(No.J13LA52)
文摘Miscibility, isothermal crystallization kinetics, and morphology of poly(L-lactide)/poly(trimethylene carbonate) (PLLA/PTMC) crystalline/amorphous blends were studied by differential scanning calorimetry (DSC) and optical microscopy (OM). The heterogeneity of OM images and an unchanged glass transition temperature showed that PLLA was immiscible with PTMC. During isothermal crystallization, the crystallization rate of PLLA improved when the PTMC content was low (≤ 20%). However, when the PTMC content was high (≥ 30%), the crystallization rate decreased significantly. The reason of these nonlinear changes in crystal kinetics was analyzed according to the nucleation and growth process by virtue of a microscope heating stage. The isothermal crystallization morphologies of the blends were also studied by polarized optical microscopy and the results confirmed the conclusions obtained from crystallization kinetics.
文摘The miscibility and phase behavior of the blends of polyoxymethylene (POM)/Novolak were investigated by the cloud point method, which showed that the POM/Novolak blends exhibited a lower critical solution temperature. The melting point of POM decreased when diluted with Novolak. From the melting temperature depression of POM, a negative interaction parameter (x) between POM and Novolak was obtained. The IR spectrum revealed that the miscibility between POM and Novolak was caused by the specific interaction between the OH groups of Novolak and the ether oxygen atoms of POM. The morphology of the blends investigated by polarized light microscopy showed that the size of spherulites of POM was sharply decreased by its mixing with Novolak. This suggests that Novolak be used as a compatibilizer for POM.
文摘Miscibility and crystallization have been studied for polypropylene-polyethylene and polyethylene-polyethyleneblends. In the case of the polypropylene blends the composition of interest is 20% polypropylene. At this composition thepolypropylene has been found to be soluble in linear low density polyethylene but insoluble in high, low and very lowdensity polyethylenes. The miscibility has been concluded from the crystallization kinetics and polarised optical microscopywith a hot stage. Polyethylene-polyethylene blends have been formed from polymers with similar average branching contentbut where they have different melting temperatures. Important consequences are to introduce long branches into apolyethylene that only has short branches, and to modify the morphology of a polyethylenes so that haze, gloss and strainhardening are improved. Polyethylene blends must be developed after careful consideration of the branch content anddistribution within each of the constituents. It is not sufficient to simply blend polyethylenes, with the desired range ofproperties, without regard to the miscibility of the blend composition.
基金supported by National Key Research and Development Program of China (No. 2016YFB0701201)National Natural Science Foundation of China (No. 51271027)
文摘Two kinds of experimental methods were tried in the present work:(i)the powder metallurgy method combined with differential thermal analysis(DTA)to determine the metastable liquidus miscibility gap for a Fe–Cu binary system and(ii)the high-temperature melting method combined with isothermal treatment to determine the stable liquidus miscibility gap for a Fe–Sn binary system.The experimental method was adopted according to the characteristics of the liquidus miscibility gap of the specific system.Using the powder metallurgy method,a uniform microstructure morphology and chemical composition was obtained in the DTA specimen,and the phase-separation temperature of the supercooled metastable liquid was measured.The isothermal treatment was applied for the samples inside the stable liquidus miscibility gap;here,equilibrated compositions were reached,and a layered morphology was formed after rapid cooling.The liquid miscibility gaps of the Fe–Cu and Fe–Sn binary systems were measured,and the peak temperatures of the corresponding miscibility gaps were determined to be about 1417°C at x(Cu)=0.465 at%and 1350°C at x(Sn)=0.487 at%,respectively.On the basis of the experimental results,both the Fe–Cu and the Fe–Sn binary systems were thermodynamically assessed.
基金This work was supported by the National Natural Science Foundation of China(No.59473901).
文摘Poly (phthalazinone ether sulfone ketone) (PPESK) was melt blended with bisphenol-A polysulfone oligomer (O-PSF) to produce a thermoplastic polymer blends. The miscibility, thermal stability, rheological and mechanical properties of the blends were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and capillary rheometry. The blends showed single Tg over the composition range and possess homogeneous microstructure. The addition of O-PSF slightly affected the thermal properties of the blends. PSF oligomer, as a processing aid, could markedly improve the processability of the PPESK. In addition, the mechanical properties of the blends were increased, to some degree, by adding O-PSF.
基金financially supported by the National Natural Science Foundation of China (No. 51573016)
文摘The blends of novel branched poly(ethylene succinate)(b-PES) and poly(vinyl phenol)(PVPh) were prepared v ia a solution and casting method. The miscibility, melting behavior, spherulitic morphology and growth, and crystal structure of b-PES/PVPh blends were investigated in detail. PVPh was miscible with b-PES over the whole compositions as evidenced by the single composition dependent glass transition temperature. Double melting behavior occurred in neat b-PES and b-PES/PVPh 85/15 blend after isothermal melt crystallization, which may be explained by the melting, recrystallization, and remelting mechanism. In addition, the depression of equilibrium melting point of an 85/15 blend was also found, confirming again the miscibility between the two components. The addition of PVPh caused the decrease of nucleation density and crystal growth rates of b-PES spherulites in the blend. The crystal structure of b- PES was unchanged before and after blending;moreover, the crystallinity of b-PES decreased slightly in the blend.
基金Financial support from the National Natural Science Foundation of China (Nos. 51371108, 51501104 and 51501103) and the Natural Science Foundation of Shandong Province (No. ZR2014EMM011) is gratefully acknowledged. A major part of the present computation was carried out using the HPC Cluster Supercomputer center at Shandong University (Weihai).
文摘The metallic liquid with miscibility gap has been widely explored recently because of the increasing plastic deformation ability of phase-separated metallic glass. However, the poor glass-forming ability limits its application as the structural materials due to the positive mixing enthalpy of the two elements. Since high pressure is in favor of the formation of the glass, the effect of pressure on the structural and dynamical heterogeneity of phase-separated CusoAgso liquid is inves- tigated by molecular dynamics simulation in the pressure range of 0-16 GPa. The results clearly show that the pressure promotes the formation of metallic glass by increasing the number of fivefold symmetry cluster W and dynamical relaxation time; meanwhile, the liquid-liquid phase separation is also enhanced, and the homogenous atom pAlrs show stronger interaction than heterogeneous atom pAlrs with increasing pressure. The dynamical heterogeneity is related to the formation of fivefold symmetry clusters. The lower growing rate of W at higher pressure with decreasing temperature corresponds to the slow increase in dynamical heterogeneity. The pressured glass with miscibility gap may act as a candidate glass with improved plastic formation ability. The results explore the structural and dynamical heterogeneity of phase-separated liquid at atomic level.
基金financially supported by the Special Funds for Major State Basic Research Projects of China(No.2011CB606006)
文摘In this work, polypropylene (PP)/octene-ethylene copolymer (POE) blends were injection-molded using the so- called dynamic packing injection technique, which imposed oscillatory shear on the gradually cooling melt during the packing solidification stage. In this way, the effect of shear on the size distribution and anisotropy of the minor phase droplets could be investigated. Besides, by using two kinds of POE with different octene contents, the effect of component miscibility was also studied. The results show that the droplet size is mainly determined by composition and miscibility, and droplet anisotropy is mainly determined by droplet size and shear. Most importantly, under the same processing condition, droplet anisotropy increases with droplet size, and there seems a linear fit between them, disregarding the miscibility factor. These results may provide guidance for preparing polymer blends with desired properties by tailoring their phase morphologies.
基金financially supported by the National Natural Science Foundation of China(Nos.50933001,51221002 and 51320105012)
文摘The "sliding graft copolymer" (SGC), in which many linear poly-ε-caprolactone (PCL) side chains are bound to cyclodextrin rings of a polyrotaxane (PR), was prepared and employed to toughen diglycidyl ether of bisphenol A (DGEBA) based epoxy resin. The aim of the work is to understand the effect of SGC on the miscibility, morphology, thermal behavior, curing reaction and mechanical performance of the cured systems. From differential scanning calorimetry (DSC) analysis and dynamic mechanical thermal analysis (DMTA) of DGEBA/SGC thermosetting blends, it is found that DGEBA and SGC are miscible in the amorphous state. Fourier transform infrared spectroscopy (FTIR) suggested that the miscibility between SGC and DGEBA is due to the existence of intermolecular specific interactions (viz. hydrogen bonding). The impact strength is improved by 4 times for DGEBA/SGC (80/20) blends compared with that of the unmodified system. The increase in toughness of SGC-modified thermosets can be explained by the effect of intermolecular specific interactions of SGC with DGEBA, which is beneficial to induce the plastic deformation of matrix. This is the first report on utilizing this novel supramolecular polymer to toughen rigid epoxy matrix.
基金Project supported by the National Natural Science Foundation of China (60406002, 60325413 and 60136020), the Natural Science Foundation of Jiangsu Province (BK2003411)
文摘A theoretical calculation of the miscibility gap with considering the mismatch strain and elastic parameters was performed for the GaN1-xPx ternary alloys on (0001) GaN/sapphire substrates based on the strictly regular solution model. The calculated results show that the boundary of the spinodal isotherm shifts from x=0.06 to x=0.25 at the growth temperature of 1200 K as the strain factor increases from 0 to 1, indicating that the strain in the GaN1-xPx layers can suppress the phase separation. Meanwhile, with the increase of the effective elastic parameters of GaN and GaP, the available maximum P content also increases slightly at the growing temperature.