The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal ...This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.展开更多
The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that ...The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that at least one zero-flow arc must be present when the flow of the network reaches its maximum value.This result indicates that the maximum flow of the network will remain constant if a zero-flow arc within a circle is removed;therefore,the maximum flow of each network without circles can be calculated.The first stage involves identifying the zero-flow arc in the circle when the network flow reaches its maximum.The second stage aims to remove the zero-flow arc identified and modified in the first stage,thereby producing a new network without circles.The maximum flow of the original looped network can be obtained by solving the maximum flow of the newly generated acyclic network.Finally,an example is provided to demonstrate the validity and feasibility of this algorithm.This algorithm not only improves computational efficiency but also provides new perspectives and tools for solving similar network optimization problems.展开更多
The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on th...The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on the hybrid flow shop scheduling problem with limited buffers(LBHFSP).This paper deeply investigates the LBHFSP to optimize the goal of the total completion time.To better solve the LBHFSP,a multi-level subpopulation-based particle swarm optimization algorithm(MLPSO)is proposed,which is founded on the attributes of the LBHFSP and the shortcomings of the basic PSO(particle swarm optimization)algorithm.In MLPSO,firstly,considering the impact of the limited buffers on the process of subsequent operations,a specific circular decoding strategy is developed to accommodate the characteristics of limited buffers.Secondly,an initialization strategy based on blocking time is designed to enhance the quality and diversity of the initial population.Afterward,a multi-level subpopulation collaborative search is developed to prevent being trapped in a local optimum and improve the global exploration capability.Additionally,a local search strategy based on the first blocked job is designed to enhance the MLPSO algorithm’s exploitation capability.Lastly,numerous experiments are carried out to test the performance of the proposed MLPSO by comparing it with classical intelligent optimization and popular algorithms in recent years.The results confirm that the proposed MLPSO has an outstanding performance when compared to other algorithms when solving LBHFSP.展开更多
With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper propo...With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper proposes an improved fluid flow algorithm,aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy.The algorithm optimizes the aperture law and iteration criteria,focusing on improving the domain volume and crack pressure update strategy,thereby enabling precise capture of dynamic borehole pressure variations during injection tests.The effectiveness of the algorithm is verified through three flow-solid coupling cases.The study also analyzes the effects of borehole size,domain volume,and crack pressure update strategy on fracturing behavior.Furthermore,the performance of the improved algorithm in terms of crack propagation rate,micro-crack formation,and fluid pressure distribution was further evaluated.The results indicate that while large-size boreholes delay crack initiation,the cracks propagate more rapidly once formed.Additionally,the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage,promote crack propagation,and improve computational efficiency.展开更多
Due to the climate-dependent nature of renewable energy sources(RESs),solving the optimal power flow(OPF)problem in power systems that integrate RESs,such as photovoltaic(PV)units and wind turbines(WTs),remains a sign...Due to the climate-dependent nature of renewable energy sources(RESs),solving the optimal power flow(OPF)problem in power systems that integrate RESs,such as photovoltaic(PV)units and wind turbines(WTs),remains a significant challenge.To address this problem,this study presents an effective framework that incorporates solar and wind power generation.To manage the nonconvex and nonlinear characteristics of the OPF problem,a modified physics-inspired algorithm termed the Enhanced Coulomb’s and Franklin’s laws Algorithm(ECFA),is deployed.In the proposed OPF model,the power generated from RESs is considered a dependent variable,while voltages at buses equipped with RESs serve as decision variables.Real-time data on solar irradiation and wind speed are used to model the power outputs of PV units and WTs,respectively.Although the Coulomb’s and Franklin’s law algorithm(CFA)offers some advantages,it underperforms on complex optimization tasks compared to SSA,BA,SCA,ABC,and CFA.The enhanced version of the CFA improves the search process across the feasible space by incorporating diverse interaction methods and enhancing exploitation capabilities.The performance of the proposed ECFA is assessed through comprehensive comparisons with state-of-the-art methods for solving the OPF problem.展开更多
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf...Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.展开更多
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags...Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.展开更多
A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Se...A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion.展开更多
Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assig...Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.展开更多
After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algo...After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced.展开更多
At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization...At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly.Optical flow is an image-based method for calculating the velocity of pixel point movement in an image.However,for ordinary optical flow,the difference in pixel value as well as the calculation accuracy can be reduced in weak light.Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection.In this paper,combining the polarization imaging technique with the traditional optical flow algorithm,a polarization optical flow algorithm is proposed,and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors.This research lays the foundation for day and night all-weather polarization navigation applications in future.展开更多
The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then,an immune based partheno-genetic algorithm ...The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then,an immune based partheno-genetic algorithm was proposed by making use of concepts and principles introduced from immune system and genetic system in nature.In this method,processing se- quence of products could be expressed by the character encoding and each antibody represents a feasible schedule.Affinity was used to measure the matching degree between antibody and antigen.Then several antibodies producing operators,such as swopping,mov- ing,inverting,etc,were worked out.This algorithm was combined with evolution function of the genetic algorithm and density mechanism in organisms immune system.Promotion and inhibition of antibodies were realized by expected propagation ratio of an- tibodies,and in this way,premature convergence was improved.The simulation proved that this algorithm is effective.展开更多
Many researches discussing reduced energy consumption for environmental protection focus on machine efficiency or process redesign. To optimize the machine operation time can also save the energy, and these researches...Many researches discussing reduced energy consumption for environmental protection focus on machine efficiency or process redesign. To optimize the machine operation time can also save the energy, and these researches have received great interests in recent years. This study considers three different states of machines, among processing there are two different speeds, to solve the problem of minimizing energy costs under time-of-use tariff with no tardy jobs in flexible flow shop. This problem is basically NP-hard, we proposed a hybrid genetic algorithm (GA) to solve problems in reasonable timeliness. The result shows that to optimize different states of machines under time-of use tariff can reduce energy costs significantly in on-time delivery.展开更多
The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. ...The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.展开更多
Metal injection moulding (MIM) is a new technology to manufacture small intricate parts in large quantity. Numerical simulation plays an important role in its development. To predict the specific segregation effect in...Metal injection moulding (MIM) is a new technology to manufacture small intricate parts in large quantity. Numerical simulation plays an important role in its development. To predict the specific segregation effect in MIM injection, mixture theory is adopted to model the injection flow by a bi-phasic model. This model conducts to the solution of two-coupled Stokes equations. It is an extremely computational consuming solution in the scope of the traditional algorithms, which induce a serious challenge to cost-effectivity of the MIM simulation. Referred to some methods proposed by Lewis in mono-phasic simulation and the implicit algorithms in MIM simulation, a new explicit algorithm is proposed and realized to perform efficiently this type of bi-phasic flow. Numerically this algorithm is devised to perform the simulation in a fully uncoupled manner except for a global solution of the pressure field in each time step. The physical coupling is taken into account in a sequential pattern by fractional steps.展开更多
As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed...As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed by traditional manufacturing processes,conventional hydraulic integrated valve blocks fail to satisfy the demands of a more compact channel layout and lower energy dissipation.Notably,the subjectivity in the arrangement of internal passages results in a time-consuming and labor-intensive process.This study employed additive manufacturing technology and the ant colony algorithm and B-spline curves for the meticulous design of internal passages within an aviation EHA valve block.The layout environment for the valve block passages was established,and path optimization was achieved using the ant colony algorithm,complemented by smoothing using B-spline curves.Three-dimensional modeling was performed using SolidWorks software,revealing a 10.03%reduction in volume for the optimized passages compared with the original passages.Computational fluid dynamics(CFD)simulations were performed using Fluent software,demonstrating that the algorithmically optimized passages effectively prevented the occurrence of vortices at right-angled locations,exhibited superior flow characteristics,and concurrently reduced pressure losses by 34.09%-36.36%.The small discrepancy between the experimental and simulation results validated the efficacy of the ant colony algorithm and B-spline curves in optimizing the passage design,offering a viable solution for channel design in additive manufacturing.展开更多
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti...An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.展开更多
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ...The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.展开更多
Distributed Denial-of-Service (DDoS) attacks against public web servers are increasingly common. Countering DDoS attacks are becoming ever more challenging with the vast resources and techniques increasingly available...Distributed Denial-of-Service (DDoS) attacks against public web servers are increasingly common. Countering DDoS attacks are becoming ever more challenging with the vast resources and techniques increasingly available to attackers. It is impossible for the victim servers to work on the individual level of on-going traffic flows. In this paper, we establish IP Flow which is used to select proper features for DDoS detection. The IP flow statistics is used to allocate the weights for traffic routing by routers. Our system protects servers from DDoS attacks without strong client authentication or allowing an attacker with partial connectivity information to repeatedly disrupt communications. The new algorithm is thus proposed to get efficiently maximum throughput by the traffic filtering, and its feasibility and validity have been verified in a real network circumstance. The experiment shows that it is with high average detection and with low false alarm and miss alarm. Moreover, it can optimize the network traffic simultaneously with defending against DDoS attacks, thus eliminating efficiently the global burst of traffic arising from normal traffic.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
文摘This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.
基金The National Natural Science Foundation of China(No.72001107,72271120)the Fundamental Research Funds for the Central Universities(No.NS2024047,NP2024106)the China Postdoctoral Science Foundation(No.2020T130297,2019M660119).
文摘The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that at least one zero-flow arc must be present when the flow of the network reaches its maximum value.This result indicates that the maximum flow of the network will remain constant if a zero-flow arc within a circle is removed;therefore,the maximum flow of each network without circles can be calculated.The first stage involves identifying the zero-flow arc in the circle when the network flow reaches its maximum.The second stage aims to remove the zero-flow arc identified and modified in the first stage,thereby producing a new network without circles.The maximum flow of the original looped network can be obtained by solving the maximum flow of the newly generated acyclic network.Finally,an example is provided to demonstrate the validity and feasibility of this algorithm.This algorithm not only improves computational efficiency but also provides new perspectives and tools for solving similar network optimization problems.
基金supported in part by the National Natural Science Foundation of China under Grant No.52175490.
文摘The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on the hybrid flow shop scheduling problem with limited buffers(LBHFSP).This paper deeply investigates the LBHFSP to optimize the goal of the total completion time.To better solve the LBHFSP,a multi-level subpopulation-based particle swarm optimization algorithm(MLPSO)is proposed,which is founded on the attributes of the LBHFSP and the shortcomings of the basic PSO(particle swarm optimization)algorithm.In MLPSO,firstly,considering the impact of the limited buffers on the process of subsequent operations,a specific circular decoding strategy is developed to accommodate the characteristics of limited buffers.Secondly,an initialization strategy based on blocking time is designed to enhance the quality and diversity of the initial population.Afterward,a multi-level subpopulation collaborative search is developed to prevent being trapped in a local optimum and improve the global exploration capability.Additionally,a local search strategy based on the first blocked job is designed to enhance the MLPSO algorithm’s exploitation capability.Lastly,numerous experiments are carried out to test the performance of the proposed MLPSO by comparing it with classical intelligent optimization and popular algorithms in recent years.The results confirm that the proposed MLPSO has an outstanding performance when compared to other algorithms when solving LBHFSP.
基金supported by the National Natural Science Foundation of China(Nos.52164001,52064006,52004072 and 52364004)the Science and Technology Support Project of Guizhou(Nos.[2020]4Y044,[2021]N404 and[2021]N511)+1 种基金the Guizhou Provincial Science and Technology Foundation(No.GCC[2022]005-1),Talents of Guizhou University(No.201901)the Special Research Funds of Guizhou University(Nos.201903,202011,and 202012).
文摘With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper proposes an improved fluid flow algorithm,aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy.The algorithm optimizes the aperture law and iteration criteria,focusing on improving the domain volume and crack pressure update strategy,thereby enabling precise capture of dynamic borehole pressure variations during injection tests.The effectiveness of the algorithm is verified through three flow-solid coupling cases.The study also analyzes the effects of borehole size,domain volume,and crack pressure update strategy on fracturing behavior.Furthermore,the performance of the improved algorithm in terms of crack propagation rate,micro-crack formation,and fluid pressure distribution was further evaluated.The results indicate that while large-size boreholes delay crack initiation,the cracks propagate more rapidly once formed.Additionally,the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage,promote crack propagation,and improve computational efficiency.
文摘Due to the climate-dependent nature of renewable energy sources(RESs),solving the optimal power flow(OPF)problem in power systems that integrate RESs,such as photovoltaic(PV)units and wind turbines(WTs),remains a significant challenge.To address this problem,this study presents an effective framework that incorporates solar and wind power generation.To manage the nonconvex and nonlinear characteristics of the OPF problem,a modified physics-inspired algorithm termed the Enhanced Coulomb’s and Franklin’s laws Algorithm(ECFA),is deployed.In the proposed OPF model,the power generated from RESs is considered a dependent variable,while voltages at buses equipped with RESs serve as decision variables.Real-time data on solar irradiation and wind speed are used to model the power outputs of PV units and WTs,respectively.Although the Coulomb’s and Franklin’s law algorithm(CFA)offers some advantages,it underperforms on complex optimization tasks compared to SSA,BA,SCA,ABC,and CFA.The enhanced version of the CFA improves the search process across the feasible space by incorporating diverse interaction methods and enhancing exploitation capabilities.The performance of the proposed ECFA is assessed through comprehensive comparisons with state-of-the-art methods for solving the OPF problem.
基金The National Natural Science Foundation of China(No.71101014,50679008)Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411105)the Science and Technology Project of the Department of Communications of Henan Province(No.2010D107-4)
文摘Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.
基金Supported by National Natural Science Foundation of China(Grant No.71301008)Beijing Municipal Natural Science Foundation of China(Grant No.9144030)
文摘Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
基金Supported by the National Natural Science Foundation of China (61174040, 61104178)the Fundamental Research Funds for the Central Universities
文摘A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion.
文摘Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.
文摘After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced.
基金supported by the National Natural Science Foundation of China(Nos.51675076 and 51505062)the Science Fund for Creative Research Groups of NSFC(No.51621064)the Basic scientific research fees for Central Universities(Nos.DUT17GF109 and DUT16TD20)
文摘At present,both the point source and the imaging polarization navigation devices only can output the angle information,which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly.Optical flow is an image-based method for calculating the velocity of pixel point movement in an image.However,for ordinary optical flow,the difference in pixel value as well as the calculation accuracy can be reduced in weak light.Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection.In this paper,combining the polarization imaging technique with the traditional optical flow algorithm,a polarization optical flow algorithm is proposed,and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors.This research lays the foundation for day and night all-weather polarization navigation applications in future.
文摘The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then,an immune based partheno-genetic algorithm was proposed by making use of concepts and principles introduced from immune system and genetic system in nature.In this method,processing se- quence of products could be expressed by the character encoding and each antibody represents a feasible schedule.Affinity was used to measure the matching degree between antibody and antigen.Then several antibodies producing operators,such as swopping,mov- ing,inverting,etc,were worked out.This algorithm was combined with evolution function of the genetic algorithm and density mechanism in organisms immune system.Promotion and inhibition of antibodies were realized by expected propagation ratio of an- tibodies,and in this way,premature convergence was improved.The simulation proved that this algorithm is effective.
文摘Many researches discussing reduced energy consumption for environmental protection focus on machine efficiency or process redesign. To optimize the machine operation time can also save the energy, and these researches have received great interests in recent years. This study considers three different states of machines, among processing there are two different speeds, to solve the problem of minimizing energy costs under time-of-use tariff with no tardy jobs in flexible flow shop. This problem is basically NP-hard, we proposed a hybrid genetic algorithm (GA) to solve problems in reasonable timeliness. The result shows that to optimize different states of machines under time-of use tariff can reduce energy costs significantly in on-time delivery.
基金supported in part by the National Outstanding Youth Foundation of P.R.China (60525303)the National Natural Science Foundation of P.R.China(60404022,60604004)+2 种基金the Natural Science Foundation of Hebei Province (102160)the special projects in mathematics funded by the Natural Science Foundation of Hebei Province(07M005)the NS of Education Office in Hebei Province (2004123).
文摘The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.
基金Supported by the Invited Professor Program of French Ministry of Education (No. 9808588) , the French-Chinese Advanced Research Program (M98-04)the Foundation for University Key Teacher by the Chinese Ministry of Education (GG-460-10613-2770).
文摘Metal injection moulding (MIM) is a new technology to manufacture small intricate parts in large quantity. Numerical simulation plays an important role in its development. To predict the specific segregation effect in MIM injection, mixture theory is adopted to model the injection flow by a bi-phasic model. This model conducts to the solution of two-coupled Stokes equations. It is an extremely computational consuming solution in the scope of the traditional algorithms, which induce a serious challenge to cost-effectivity of the MIM simulation. Referred to some methods proposed by Lewis in mono-phasic simulation and the implicit algorithms in MIM simulation, a new explicit algorithm is proposed and realized to perform efficiently this type of bi-phasic flow. Numerically this algorithm is devised to perform the simulation in a fully uncoupled manner except for a global solution of the pressure field in each time step. The physical coupling is taken into account in a sequential pattern by fractional steps.
基金Supported by National Natural Science Foundation of China(Grant No.51890881)。
文摘As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed by traditional manufacturing processes,conventional hydraulic integrated valve blocks fail to satisfy the demands of a more compact channel layout and lower energy dissipation.Notably,the subjectivity in the arrangement of internal passages results in a time-consuming and labor-intensive process.This study employed additive manufacturing technology and the ant colony algorithm and B-spline curves for the meticulous design of internal passages within an aviation EHA valve block.The layout environment for the valve block passages was established,and path optimization was achieved using the ant colony algorithm,complemented by smoothing using B-spline curves.Three-dimensional modeling was performed using SolidWorks software,revealing a 10.03%reduction in volume for the optimized passages compared with the original passages.Computational fluid dynamics(CFD)simulations were performed using Fluent software,demonstrating that the algorithmically optimized passages effectively prevented the occurrence of vortices at right-angled locations,exhibited superior flow characteristics,and concurrently reduced pressure losses by 34.09%-36.36%.The small discrepancy between the experimental and simulation results validated the efficacy of the ant colony algorithm and B-spline curves in optimizing the passage design,offering a viable solution for channel design in additive manufacturing.
基金Projects(61174040,61104178,61374136) supported by the National Natural Science Foundation of ChinaProject(12JC1403400) supported by Shanghai Commission of Science and Technology,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.
基金the Research of New Intelligent Integrated Transport Information System,Technical Plan Project of Binhai New District,Tianjin(No.2015XJR21017)
文摘The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.
文摘Distributed Denial-of-Service (DDoS) attacks against public web servers are increasingly common. Countering DDoS attacks are becoming ever more challenging with the vast resources and techniques increasingly available to attackers. It is impossible for the victim servers to work on the individual level of on-going traffic flows. In this paper, we establish IP Flow which is used to select proper features for DDoS detection. The IP flow statistics is used to allocate the weights for traffic routing by routers. Our system protects servers from DDoS attacks without strong client authentication or allowing an attacker with partial connectivity information to repeatedly disrupt communications. The new algorithm is thus proposed to get efficiently maximum throughput by the traffic filtering, and its feasibility and validity have been verified in a real network circumstance. The experiment shows that it is with high average detection and with low false alarm and miss alarm. Moreover, it can optimize the network traffic simultaneously with defending against DDoS attacks, thus eliminating efficiently the global burst of traffic arising from normal traffic.