In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to...In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.展开更多
Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous ...Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.展开更多
Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for ...Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for anyε>0,the number of v∈V with v≤N such that the following inequality|λ_(1)p_(1)~2+λ_(2)p_(2)~2+λ_(3)p_(3)~4+λ_(4)p_(4)~4+λ_5p_5~4-v|<v^(-δ)has no solution in prime variables p_(1),p_(2),p_(3),p_(4),p_(5)does not exceed O(N^(29/32+2δ+ε)).展开更多
This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–M...This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–Maruyama discretization and derive its convergence rate.In particular,the solution of the discretized system converges to the solution of the first-order limit equation in the mean-square sense,and this convergence is independent of the order in which the mass parameterμand the step size h tend to zero.展开更多
In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which ha...In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).展开更多
Virtual coupling is a novel technology that enables trains to run closely together without physical connections through communication and automation systems.The paper addresses an adaptive polynomial approximation alg...Virtual coupling is a novel technology that enables trains to run closely together without physical connections through communication and automation systems.The paper addresses an adaptive polynomial approximation algorithm for the cooperative control of high-speed trains(HSTs)under virtual coupling.It aims to solve the cooperative tracking control problem of HST formation operations under various scenarios,including known and unknown parameters.To enable the HST formation system to achieve cooperative operation while ensuring an appropriate spacing distance,the tracking errors of displacement and speed throughout the entire operation converge to zero.The proposed control strategy focuses on adopting polynomial approximation to handle unknown parameters,which are estimated via adaptive laws.Additionally,the unknown parameters of the HSTs are estimated online through adaptive laws.Experimental results verify the effectiveness of this method.展开更多
Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory,offering critical guidance for experimental implementations.In t...Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory,offering critical guidance for experimental implementations.In this paper,we embark on an in-depth exploration of the use of a quantum state prepared by the convex combination of given qubit states to optimally approximate the l_(1)-norm of coherence of the target quantum state,striving to make the prepared state and the target state as similar as possible.Here,we present the analytical solution for the optimal distance for any N given quantum states.We find that the optimal approximation problem for any N>4 quantum states can be transformed into an optimal approximation problem for no more than four quantum states,which not only significantly streamlines the problem but also proves advantageous for laboratories in terms of material conservation.Ultimately,a one-to-one comparison between the analytical and numerical solutions verifies the effectiveness of our approach.展开更多
Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degra...Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.展开更多
We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ...We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.展开更多
This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographi...This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographic velocity inversion. Based on the Bom/Rytov approximation of the frequency-domain wave equation, we derive the traveltime sensitivity kemels of the wave equation on the band-limited wave field and simultaneously obtain the traveltime residuals based on the Rytov approximation. In contrast to single-ray tomography, the modified velocity inversion method improves the inversion stability. Tests of the near- surface velocity model and field data prove that the proposed method has higher accuracy and Computational efficiency than ray theory tomography and full waveform inversion methods.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
The problem of strong uniqueness of best approximation from an RS set in a Banach space is considered. For a fixed RS set G and an element x∈X , we proved that the best approximation g * to x from ...The problem of strong uniqueness of best approximation from an RS set in a Banach space is considered. For a fixed RS set G and an element x∈X , we proved that the best approximation g * to x from G is strongly unique.展开更多
In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the se...In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.展开更多
The paper gives a new way of constructing Hermite Fejer and Hermite interpolatory polynomials with the nodes of the roots of first kind of Chebyshev polynomials and gives the approximation order of these two kinds of...The paper gives a new way of constructing Hermite Fejer and Hermite interpolatory polynomials with the nodes of the roots of first kind of Chebyshev polynomials and gives the approximation order of these two kinds of operators. The approximation orders are described with the best rate of approximation of f by polynomials of degree N=(q+1)n 1 in L p w spaces.展开更多
A capacitor self-calibration circuit used in a successive approximation analog-to-digital converter (SA-ADC) is presented. This capacitor self-calibration circuit can calibrate erroneous data and work with the ADC b...A capacitor self-calibration circuit used in a successive approximation analog-to-digital converter (SA-ADC) is presented. This capacitor self-calibration circuit can calibrate erroneous data and work with the ADC by adding an additional clock period. This circuit is used in a 10 bit 32 Msample/s time-interleaved SA- ADC. The chip is implemented with Chart 0. 25 μm 2. 5 V process and totally occupies an area of 1.4 mm× 1.3 mm. After calibration, the simulated signal-to-noise ratio (SNR) is 59. 586 1 dB and the spurious-free dynamic range (SFDR) is 70. 246 dB at 32 MHz. The measured signal-to-noise and distortion ratio (SINAD) is 44. 82 dB and the SFDR is 63. 760 4 dB when the ADC samples a 5.8 MHz sinusoid wave.展开更多
To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction...To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction model, case-based reasoning technique is introduced to improve the approximation model for optimization. The aircraft case model is constructed by utilizing the plane parameters related to aerodynamic characteristics as attributes of cases, and the formula of case retrieving is improved. Finally, the aerodynamic approximation model for optimization is improved by reusing the correction factors of the most similar aircraft to the current one. The multidisciplinary optimization of a civil aircraft concept is carried out with the improved aerodynamic approximation model. The results demonstrate that the precision and the efficiency of the optimization can be improved by utilizing the improved aerodynamic approximation model with ease-based reasoning technique.展开更多
Based on the conception of perturbation, an approach to the interval Bezier surfaces approximating ra- tional surfaces is presented using the energy minimization method. The method places more restrictions on the pert...Based on the conception of perturbation, an approach to the interval Bezier surfaces approximating ra- tional surfaces is presented using the energy minimization method. The method places more restrictions on the perturbation surfaces than the original surfaces. The applications of the approach are also presented. Experimen- tal result is combined with the subdivision method to obtain a piecewise interval polynomial approximation for a rational surface.展开更多
In this paper, we investigate the degree of approximation by Baskakov_Durrmeyer operator for functions which derivatives have only discontinuity points of the first kind on [0,∞) with exponential growth.
The problem of best approximating, a given square complex matrix in the Frobenius norm by normal matrices under a given spectral restriction is considered. The ne cessary and sufficient condition for the solvability ...The problem of best approximating, a given square complex matrix in the Frobenius norm by normal matrices under a given spectral restriction is considered. The ne cessary and sufficient condition for the solvability of the problem is given. A numerical algorithm for solving the problem is provided and a numerical example is presented.展开更多
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results...The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.展开更多
文摘In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.
基金supported by the National Natural Science Foundation of China (NSFC) through Grant Number 42074193
文摘Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.
基金Supported by NSFC(Nos.12301006,12471009,12071238,11901566,12001047,11971476)Beijing Natural Science Foundation(No.1242003)。
文摘Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for anyε>0,the number of v∈V with v≤N such that the following inequality|λ_(1)p_(1)~2+λ_(2)p_(2)~2+λ_(3)p_(3)~4+λ_(4)p_(4)~4+λ_5p_5~4-v|<v^(-δ)has no solution in prime variables p_(1),p_(2),p_(3),p_(4),p_(5)does not exceed O(N^(29/32+2δ+ε)).
基金supported by the PhD Research Startup Foundation of Hubei University of Economics(Grand No.XJ23BS42).
文摘This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–Maruyama discretization and derive its convergence rate.In particular,the solution of the discretized system converges to the solution of the first-order limit equation in the mean-square sense,and this convergence is independent of the order in which the mass parameterμand the step size h tend to zero.
文摘In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62203246 and 62003127)Shandong Provincial Natural Science Foundation(Grant No.ZR2024QF041)the Natural Science Foundation of Hebei Province(Grant No.F2023202060)。
文摘Virtual coupling is a novel technology that enables trains to run closely together without physical connections through communication and automation systems.The paper addresses an adaptive polynomial approximation algorithm for the cooperative control of high-speed trains(HSTs)under virtual coupling.It aims to solve the cooperative tracking control problem of HST formation operations under various scenarios,including known and unknown parameters.To enable the HST formation system to achieve cooperative operation while ensuring an appropriate spacing distance,the tracking errors of displacement and speed throughout the entire operation converge to zero.The proposed control strategy focuses on adopting polynomial approximation to handle unknown parameters,which are estimated via adaptive laws.Additionally,the unknown parameters of the HSTs are estimated online through adaptive laws.Experimental results verify the effectiveness of this method.
基金supported by the Fundamental Research Projects of Shanxi Province(Grant No.202203021222225)the National Natural Science Foundation of China(Grant Nos.12175029,12011530014,and 11775040)the Key Research and Development Project of Liaoning Province(Grant No.2020JH2/10500003).
文摘Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory,offering critical guidance for experimental implementations.In this paper,we embark on an in-depth exploration of the use of a quantum state prepared by the convex combination of given qubit states to optimally approximate the l_(1)-norm of coherence of the target quantum state,striving to make the prepared state and the target state as similar as possible.Here,we present the analytical solution for the optimal distance for any N given quantum states.We find that the optimal approximation problem for any N>4 quantum states can be transformed into an optimal approximation problem for no more than four quantum states,which not only significantly streamlines the problem but also proves advantageous for laboratories in terms of material conservation.Ultimately,a one-to-one comparison between the analytical and numerical solutions verifies the effectiveness of our approach.
基金supported in part by the National Natural Science Foundation of China(U2034209)the Postdoctoral Science Foundation of Chongqing(cstc2021jcyj-bsh X0047)+1 种基金the Fundamental Research Funds for the Central Universities(2022CDJJMRH-008)the National Natural Science Foundation of China(62203075)
文摘Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.
基金supported by the National Natural Science Foundation of China(Grant Nos.12441502,12122506,12204230,and 12404554)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0300404)+6 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515020070)Shenzhen Science and Technology Program(Grant No.RCYX20200714114522109)China Postdoctoral Science Foundation(CPSF)(2024M762114)Postdoctoral Fellowship Program of CPSF(GZC20231727)supported by the National Natural Science Foundation of China(Grant Nos.92165206 and 11974330)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301603)the Fundamental Research Funds for the Central Universities。
文摘We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.
基金sponsored by the National Natural Science Foundation of China(No.41204086)the Self-governed Innovative Project of China University of Petroleum(No.13CX02041A)+2 种基金the Doctoral Fund of National Ministry of Education(No.20110133120001)the National 863 Project(2011AA060301)the Major National Science and Technology Program(No.2011ZX05006-002)
文摘This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographic velocity inversion. Based on the Bom/Rytov approximation of the frequency-domain wave equation, we derive the traveltime sensitivity kemels of the wave equation on the band-limited wave field and simultaneously obtain the traveltime residuals based on the Rytov approximation. In contrast to single-ray tomography, the modified velocity inversion method improves the inversion stability. Tests of the near- surface velocity model and field data prove that the proposed method has higher accuracy and Computational efficiency than ray theory tomography and full waveform inversion methods.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
文摘The problem of strong uniqueness of best approximation from an RS set in a Banach space is considered. For a fixed RS set G and an element x∈X , we proved that the best approximation g * to x from G is strongly unique.
文摘In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.
文摘The paper gives a new way of constructing Hermite Fejer and Hermite interpolatory polynomials with the nodes of the roots of first kind of Chebyshev polynomials and gives the approximation order of these two kinds of operators. The approximation orders are described with the best rate of approximation of f by polynomials of degree N=(q+1)n 1 in L p w spaces.
文摘A capacitor self-calibration circuit used in a successive approximation analog-to-digital converter (SA-ADC) is presented. This capacitor self-calibration circuit can calibrate erroneous data and work with the ADC by adding an additional clock period. This circuit is used in a 10 bit 32 Msample/s time-interleaved SA- ADC. The chip is implemented with Chart 0. 25 μm 2. 5 V process and totally occupies an area of 1.4 mm× 1.3 mm. After calibration, the simulated signal-to-noise ratio (SNR) is 59. 586 1 dB and the spurious-free dynamic range (SFDR) is 70. 246 dB at 32 MHz. The measured signal-to-noise and distortion ratio (SINAD) is 44. 82 dB and the SFDR is 63. 760 4 dB when the ADC samples a 5.8 MHz sinusoid wave.
文摘To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction model, case-based reasoning technique is introduced to improve the approximation model for optimization. The aircraft case model is constructed by utilizing the plane parameters related to aerodynamic characteristics as attributes of cases, and the formula of case retrieving is improved. Finally, the aerodynamic approximation model for optimization is improved by reusing the correction factors of the most similar aircraft to the current one. The multidisciplinary optimization of a civil aircraft concept is carried out with the improved aerodynamic approximation model. The results demonstrate that the precision and the efficiency of the optimization can be improved by utilizing the improved aerodynamic approximation model with ease-based reasoning technique.
基金Supported by the Foundation of Inner Mongolia University of Technology(X200829)~~
文摘Based on the conception of perturbation, an approach to the interval Bezier surfaces approximating ra- tional surfaces is presented using the energy minimization method. The method places more restrictions on the perturbation surfaces than the original surfaces. The applications of the approach are also presented. Experimen- tal result is combined with the subdivision method to obtain a piecewise interval polynomial approximation for a rational surface.
文摘In this paper, we investigate the degree of approximation by Baskakov_Durrmeyer operator for functions which derivatives have only discontinuity points of the first kind on [0,∞) with exponential growth.
文摘The problem of best approximating, a given square complex matrix in the Frobenius norm by normal matrices under a given spectral restriction is considered. The ne cessary and sufficient condition for the solvability of the problem is given. A numerical algorithm for solving the problem is provided and a numerical example is presented.
基金the National Nature Science Foundation of China (60775047, 60402024)
文摘The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.