An A1203p/A1 composite was successfully synthesized using a displacement reaction between 80 wt% A1 and 20 wt% CuO powders at a heating rate of 5 ℃/min. Two different sizes CuO particles were used, and all the experi...An A1203p/A1 composite was successfully synthesized using a displacement reaction between 80 wt% A1 and 20 wt% CuO powders at a heating rate of 5 ℃/min. Two different sizes CuO particles were used, and all the experiments were conducted under an argon atmosphere. To analyze the microstructural evolution during synthesis, the A1-20 wt% CuO samples were heated to the temperatures selected according to the differential scanning calorimetry curve and then immediately quenched with water. The phase composites and microstructure of the water-quenching samples were in- vestigated using X-ray diffraction, optical microscopy, scanning electron microscopy and energy-dispersive spectrometry. The results indicate that the CuO particle size has a significant effect on the microstructural evolution of the samples during the heating stage and on the microstructure of synthesized composites. Smaller CuO particles can decrease the reaction temperature, narrow the reaction temperature range at the different reaction stages during the heating stage and make the size and distribution of in situ A1203 particles more uniform. The reaction between A1 and CuO can be complete as the temperature rises to 900 ℃. The size of the in situ A1203 particles is approximately 5 μm when the size of the CuO particles is less than 6 μm. This sample has a relatively high Rockwell hardness of 60 HRB.展开更多
The effects of CEC passes, isothermal holding time and reheating temperature on the microstructure evolution and grain coarsening behaviour of AZ61 magnesium alloy produced by the recrystallisation and partialmelting ...The effects of CEC passes, isothermal holding time and reheating temperature on the microstructure evolution and grain coarsening behaviour of AZ61 magnesium alloy produced by the recrystallisation and partialmelting (RAP) process were investigated. Before partial remelting, as-cast AZ61 alloy was deformed by cyclic extrusion compression (CEC) with one pass and two pass at 330 ℃. After CEC, the microstructure consisted of unrecrystallized grains and deformed eutectic compounds. Increasing isothermal holding time resulted in the formation of spheroidal grains surrounded by liquid films. With increasing the isothermal holding time, the solid grain size increased and the degree of spheroidization was improved. With increasing the reheating temperature, namely increasing liquid fraction, the solid grain size obviously decreased during the period from 560 ℃ to 570 ℃ and then slightly increased after 570 ℃, while the shape factor increased monotonously. During partial remelting, increasing reheating temperature can properly short the isothermal holding time to obtain fine structure. Moreover, increasing the numbers of CEC passes could produce finer semi-solid microstructure. The coarsening behavior of solid grains in the semi-solid state obeys Ostwald ripening and grain coalescence mechanisms. The coarsening rate constant, K, 595 ℃. After CEC plus partial remelting, the ideal and fine was suitable for thixoforming. was 80μm^3.s^-1 for samples partially remelted at semi-solid state structure can be obtained, which展开更多
基金financially supported by the Inner Mongolia Natural Science Foundation of China (Nos. 2012MS0801 and 2013MS0804)
文摘An A1203p/A1 composite was successfully synthesized using a displacement reaction between 80 wt% A1 and 20 wt% CuO powders at a heating rate of 5 ℃/min. Two different sizes CuO particles were used, and all the experiments were conducted under an argon atmosphere. To analyze the microstructural evolution during synthesis, the A1-20 wt% CuO samples were heated to the temperatures selected according to the differential scanning calorimetry curve and then immediately quenched with water. The phase composites and microstructure of the water-quenching samples were in- vestigated using X-ray diffraction, optical microscopy, scanning electron microscopy and energy-dispersive spectrometry. The results indicate that the CuO particle size has a significant effect on the microstructural evolution of the samples during the heating stage and on the microstructure of synthesized composites. Smaller CuO particles can decrease the reaction temperature, narrow the reaction temperature range at the different reaction stages during the heating stage and make the size and distribution of in situ A1203 particles more uniform. The reaction between A1 and CuO can be complete as the temperature rises to 900 ℃. The size of the in situ A1203 particles is approximately 5 μm when the size of the CuO particles is less than 6 μm. This sample has a relatively high Rockwell hardness of 60 HRB.
文摘The effects of CEC passes, isothermal holding time and reheating temperature on the microstructure evolution and grain coarsening behaviour of AZ61 magnesium alloy produced by the recrystallisation and partialmelting (RAP) process were investigated. Before partial remelting, as-cast AZ61 alloy was deformed by cyclic extrusion compression (CEC) with one pass and two pass at 330 ℃. After CEC, the microstructure consisted of unrecrystallized grains and deformed eutectic compounds. Increasing isothermal holding time resulted in the formation of spheroidal grains surrounded by liquid films. With increasing the isothermal holding time, the solid grain size increased and the degree of spheroidization was improved. With increasing the reheating temperature, namely increasing liquid fraction, the solid grain size obviously decreased during the period from 560 ℃ to 570 ℃ and then slightly increased after 570 ℃, while the shape factor increased monotonously. During partial remelting, increasing reheating temperature can properly short the isothermal holding time to obtain fine structure. Moreover, increasing the numbers of CEC passes could produce finer semi-solid microstructure. The coarsening behavior of solid grains in the semi-solid state obeys Ostwald ripening and grain coalescence mechanisms. The coarsening rate constant, K, 595 ℃. After CEC plus partial remelting, the ideal and fine was suitable for thixoforming. was 80μm^3.s^-1 for samples partially remelted at semi-solid state structure can be obtained, which