Tests under mechanical strain control were performed to investigate the TMF behavior of Z2CND18.12N within the temperature range between 150–550 ? C. Different strain amplitudes and phase-angles were applied. Total ...Tests under mechanical strain control were performed to investigate the TMF behavior of Z2CND18.12N within the temperature range between 150–550 ? C. Different strain amplitudes and phase-angles were applied. Total strain controlled low cycle fatigue test was also performed at the peak temperature of TMF cycling. The results show that the cyclic stress response of the material displayed an initial hardening regime followed by a saturation period and then cyclic softening till failure. The TMF cycling leads to the development of significant amounts of mean stress. Some life prediction models were employed to predict the TMF life of Z2CND18.12N, and the results indicate that the energy-based models provide good prediction on the thermal-mechanical fatigue behaviors of this material. An optical microscopic observation shows that the surface crack initiations and crack propagations are typically transgranular mode.展开更多
Selective laser melting is an additive manufacturing method based on local melting of a metal powder bed by a high power laser beam. Fast laser scans are responsible for severe thermal gradients and high cooling rates...Selective laser melting is an additive manufacturing method based on local melting of a metal powder bed by a high power laser beam. Fast laser scans are responsible for severe thermal gradients and high cooling rates which produce complex hydrodynamic fluid flow. These phenomena affect crystal growth and orientation and are believed to be the cause of material spattering and microstructural defects, e.g. pores and incompletely melted particles. In this work, the microstructure and texture of 316L bars built along two different orientations and the effect of different distribution of defects on their mechanical response and failure mechanisms were investigated. Partially molten powder particles are believed to be responsible for the scattering in elongation to failure, reduced strength, and premature failure of vertical samples.展开更多
The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination ...The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination of high strength, corrosion resistance, perfect mechanical properties, workability and low cost.Since the precipitation behavior of the steels during long-term service at elevated temperature would lead to the deterioration of mechanical properties, it is essential to clarify the evolution of secondary phases in the microstructure of the steels. Here, a summary of recent progress in the precipitation behavior and the coarsening mechanism of various precipitates during aging in austenitic steels is made. Various secondary phases are formed under service conditions, like MX carbonitrides, M_(23)C_6 carbides, Z phase, sigma phase and Laves phase. It is found that the coarsening rate of M_(23)C_6 carbides is much higher than that of MX carbonitrides. In order to understand the thermal deformation mechanism, a constitutive equation can be established, and thus obtained processing maps are beneficial to optimizing thermal processing parameters, leading to improved thermal processing properties of steels.展开更多
Effect of the addition of trace HA particles into Mg-2Zn-0.5Sr on microstructure, mechanical properties, and bio-corrosion behavior was investigated in comparison with pure Mg. Microstructures of the Mg-2Zn-0.5Sr-xHA ...Effect of the addition of trace HA particles into Mg-2Zn-0.5Sr on microstructure, mechanical properties, and bio-corrosion behavior was investigated in comparison with pure Mg. Microstructures of the Mg-2Zn-0.5Sr-xHA composites (x= 0, 0.1 and 0.3 wt%) were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). Results of tensile tests at room temperature show that yield strength (YS) of Mg- 2Zn-0.5Sr/HA composites increases significantly, but the ultimate tensile strength (UTS) and elongation decrease with the addition of HA particles from 0 up to 0.3 wt%. Bio-corrosion behavior was investigated by immersion tests and electrochemical tests. Electrochemical tests show that corrosion potential (Ecorr) of Mg-2Zn-0.5Sr/HA composites significantly shifts toward nobler direction from -1724 to -1660 mVscE and the corrosion current density decreases from 479.8 to 280.8 p.Acm^-2 with the addition of HA particles. Immersion tests show that average corrosion rate of Mg-2Zn-0.BSr/HA composites decreases from 11.7 to 9.1 mm/year with the addition of HA particles from 0 wt% up to 0.3 wt%. Both microstructure and mechanical properties can be attributed to grain refinement and mechanical bonding of HA particles with second phases and α-Mg matrix. Bio-corrosion behavior can be attributed to grain refinement and the formation of a stable and dense CaHPO4 protective film due to the adsorption of Ca^2+ on HA particles. Our analysis shows that the Mg-2Zn-0.5Sr/0.3HA with good strength and corrosion resistance can be a good material candidate for biomedical applications.展开更多
In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resul...In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resulting Mg-Al/Al N composites were investigated. It showed that the 5 wt% AlN reinforcements led to the highest densification and bending strength. The total strengthening effect of AlN particles was predicted by considering the contributions of CTE mismatch between the matrix and the particles,load bearing and Hall-Petch mechanism. The results revealed that the increase of dislocation density,the change of Mg17Al12 phase morphology, and the effective load transfer were the major strengthening contributors to the composites. The fracture of the composites altered from plastic to brittle mode with increasing reinforcement content. The regions of clustered particles in the composites were easy to be damaged under external load, and the fracture occurred mainly along grain boundaries.展开更多
The interfacial microstructure and tensile properties of the squeeze cast SiCw/AZ91 Mg composites were characterized. There exist uniform, line and discrete MgO particles at the interface between SiC whisker and magn...The interfacial microstructure and tensile properties of the squeeze cast SiCw/AZ91 Mg composites were characterized. There exist uniform, line and discrete MgO particles at the interface between SiC whisker and magnesium in the composites using acid aluminum phosphate binder. The interfacial reaction products MgO are beneficial to interfacial bonding between SiCw and the Mg matrix. resulting in an improvement of the mechanical properties of the composite.展开更多
2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between ...2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between fibers and matrix and protect the fiber, pyrolytic carbon(Py C) coating was deposited on the surface of T700 carbon fiber by chemical vapor deposition(CVD). Microstructure observation of the composites revealed that the composites were well fabricated by LSEVI. The segregation of aluminum at fiber surface led to the formation of Mg_(17)Al_(12) precipitates at the interface. The aluminum improved the infiltration of the alloy and Py C coating protected the fibers effectively. The ultimate tensile strength of 2D-C_f/AZ91 D composites was about 400 MPa. The fracture process of 2D-C_f/AZ91 D composites was transverse fiber interface cracking–matrix transferring load–longitudinal fibers bearing load–longitudinal fibers breaking.展开更多
Three different castables based on the Al_2O_3–MgO –CaO system were prepared as steel-ladle purging plug refractories: corundum-based low-cement castable(C-LCC), corundum-spinel-based low-cement castable(C-S-LCC...Three different castables based on the Al_2O_3–MgO –CaO system were prepared as steel-ladle purging plug refractories: corundum-based low-cement castable(C-LCC), corundum-spinel-based low-cement castable(C-S-LCC), and corundum-spinel no-cement castable(C-S-NCC)(hydratable alumina(ρ-Al_2O_3) bonded). The fracture behavior at room temperature was tested by the method of "wedge-splitting" on samples pre-fired at different temperatures; the specific fracture energy G′f and notched tensile strength σNT were obtained from these tests. In addition, the Young's modulus E was measured by the method of resonance frequency of damping analysis(RFDA). The thermal stress resistance parameter R′′′′ calculated using the values of G′f, σNT, and E was used to evaluate the thermal shock resistance of the materials. According to the microstructure analysis results, the sintering effect and the bonding type of the matrix material were different among these three castables, which explains their different fracture behaviors.展开更多
The effect of adding Ta on the changes of microstructure and Ms temperature of a dualphase shape memory alloy with compositions of (Ni51 Ti49)1 -x.Tax. and Ni50-Ti50 -g.Ta.g were systematically studied. An optical mi...The effect of adding Ta on the changes of microstructure and Ms temperature of a dualphase shape memory alloy with compositions of (Ni51 Ti49)1 -x.Tax. and Ni50-Ti50 -g.Ta.g were systematically studied. An optical microscope, SEM, X-ray diffraction and DSC were utilized in this work. The evolution of the microstructure as a function of Ta content was characterized. The variation of the Ni/Ti ratio in the NiTi phase plays an important role in the change of the Ms temperatures due to the addition of Ta. A pseudobinary NiTi-Ta phase diagram was proposed based on these results.展开更多
ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition(LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC...ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition(LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC coatings were investigated. ZrC coating grew in an island-layer mode. The formation of coating was dominated by the nucleation of ZrC in the initial 20 minutes, and the rapid nucleation generated a fine-grained structure of ZrC coating. When the deposition time was over 30 min, the growth of coating was dominated by that of crystals, giving a column-arranged structure. Energy dispersive X-ray spectroscopy showed that the molar ratio of carbon to zirconium was near 1:1 in ZrC coating, and X-ray photoelectron spectroscopy showed that ZrC was the main phase in coatings, accompanied by about 2.5mol% ZrO2 minor phase.展开更多
Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray...Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition.展开更多
Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stre...Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level.展开更多
The stress–strain behavior and strain rate sensitivity of pre-strained Ni80Cr20(Ni20Cr) were studied at strain rates from 4.8×10^(–4)s^(–1) to 1.1×10^(–1)s^(–1). Specimens were prepared throug...The stress–strain behavior and strain rate sensitivity of pre-strained Ni80Cr20(Ni20Cr) were studied at strain rates from 4.8×10^(–4)s^(–1) to 1.1×10^(–1)s^(–1). Specimens were prepared through cold drawing with abnormal plastic deformation. The texture of the specimen was characterized using electron backscatter diffraction. Results revealed that the ultimate tensile strength and ductility of the pre-strained Ni20Cr microwires simultaneously increased with increasing strain rate. Twinning-induced negative strain rate sensitivity was discovered. Positive strain rate sensitivity was present in fracture flow stress, whereas negative strain rate sensitivity was detected in flow stress values of σ_(0.5%) and σ_(1%). Tensile test of the pre-strained Ni20Cr showed that twinning deformation predominated, whereas dislocation slip deformation dominated when twinning deformation reached saturation. The trends observed in the fractions of 2°-5°, 5°-15°, and 15°-180° grain boundaries confirmed that twinning deformation dominated the first stage.展开更多
A novel process was proposed to strengthen the decomposition of the mixed rare earth concentrate by utilizing the microwave radiation.Mineralogical information on the mechanisms by which microwave heating improved the...A novel process was proposed to strengthen the decomposition of the mixed rare earth concentrate by utilizing the microwave radiation.Mineralogical information on the mechanisms by which microwave heating improved the leaching behavior of rare earth elements(REEs),and an interpretation of the interrelationship between mineralogy,decomposition process,and leaching process were provided in this study.The influences of the temperature,time of microwave heating and contents of NaO H(mass ratio of NaO H to mixed rare earth concentrate)on the decomposition of mixed rare earth concentrate were investigated.The results revealed that the temperature was the main factor affecting the decomposition process.The recovery of REEs by hydrochloric acid leaching reached 93.28% under the microwave heating conditions:140 oC,30 min and 35.35% NaO H.The BET specific surface area and SEM analysis indicated that the particles of mixed rare earth concentrate were non-hole,while the particles presented a porous structure after heating the concentrate by microwave radiation.For the microwave treated sample after water leaching,the BET specific surface area was 11.04 m^2/g,which was higher than the corresponding values(6.94 m^2/g)for the mixed rare earth concentrate.This result could be attributed to the phase changes of bastnaesite and monazite,and a number of cracks induced by thermal stress.The increase of BET specific surface area resulted in an increase of the recovery of REEs by promoting interaction within the system of acid leaching.展开更多
Diesel particulate matter(DPF) is usually employed to meet the stringent regulations on particulate matter(PM) emissions for diesel engine. To resolve the DPF regeneration problem, comprehensive information about the ...Diesel particulate matter(DPF) is usually employed to meet the stringent regulations on particulate matter(PM) emissions for diesel engine. To resolve the DPF regeneration problem, comprehensive information about the factors influencing PM oxidation behaviors must be understood. Large amounts of factors related to PM oxidation activity have been investigated, however, some relations are still ambiguous. This paper reviews the factors related to PM oxidation activity that the factors are divided into the engine-correlated and engine-uncorrelated factors. The methods with both advantages and disadvantages to test the oxidation behaviors are introduced. The microstructure and ingredient being fundamental factors affecting PM oxidation behaviors are as the principle line to correlate PM oxidation behaviors and engine-correlated factors. The relations of engine-correlated factors with oxidation behaviors are obtained though advanced technologies that are mutual complementation. The engine-uncorrelated factors are also reviewed that these factors are vital to oxidation activity changes. Multiple-factor analysis rather than single-factor analysis should be developed to make the oxidation behaviors of diesel PM more clear.展开更多
基金supported by the National High Technical Research and Development Program of China (No.2009AA04Z403)PhD Programs Foundation of Ministry of Education of China (No.20090032110016)support (No.2010NGQ003) from Key Laboratory of Efficient & Clean Energy Utilization, College of Hunan Province
文摘Tests under mechanical strain control were performed to investigate the TMF behavior of Z2CND18.12N within the temperature range between 150–550 ? C. Different strain amplitudes and phase-angles were applied. Total strain controlled low cycle fatigue test was also performed at the peak temperature of TMF cycling. The results show that the cyclic stress response of the material displayed an initial hardening regime followed by a saturation period and then cyclic softening till failure. The TMF cycling leads to the development of significant amounts of mean stress. Some life prediction models were employed to predict the TMF life of Z2CND18.12N, and the results indicate that the energy-based models provide good prediction on the thermal-mechanical fatigue behaviors of this material. An optical microscopic observation shows that the surface crack initiations and crack propagations are typically transgranular mode.
文摘Selective laser melting is an additive manufacturing method based on local melting of a metal powder bed by a high power laser beam. Fast laser scans are responsible for severe thermal gradients and high cooling rates which produce complex hydrodynamic fluid flow. These phenomena affect crystal growth and orientation and are believed to be the cause of material spattering and microstructural defects, e.g. pores and incompletely melted particles. In this work, the microstructure and texture of 316L bars built along two different orientations and the effect of different distribution of defects on their mechanical response and failure mechanisms were investigated. Partially molten powder particles are believed to be responsible for the scattering in elongation to failure, reduced strength, and premature failure of vertical samples.
基金the China National Funds for Distinguished Young Scientists(Grant No.51325401)the National Natural Science Foundation of China(Grant No.51474156 and U1660201)the National High Technology Research and Development Program of China(Grant No.2015AA042504)for grant and financial support
文摘The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination of high strength, corrosion resistance, perfect mechanical properties, workability and low cost.Since the precipitation behavior of the steels during long-term service at elevated temperature would lead to the deterioration of mechanical properties, it is essential to clarify the evolution of secondary phases in the microstructure of the steels. Here, a summary of recent progress in the precipitation behavior and the coarsening mechanism of various precipitates during aging in austenitic steels is made. Various secondary phases are formed under service conditions, like MX carbonitrides, M_(23)C_6 carbides, Z phase, sigma phase and Laves phase. It is found that the coarsening rate of M_(23)C_6 carbides is much higher than that of MX carbonitrides. In order to understand the thermal deformation mechanism, a constitutive equation can be established, and thus obtained processing maps are beneficial to optimizing thermal processing parameters, leading to improved thermal processing properties of steels.
基金financial support by the National Key Project of Research and Development Plan (No. 2016YFB0700303)
文摘Effect of the addition of trace HA particles into Mg-2Zn-0.5Sr on microstructure, mechanical properties, and bio-corrosion behavior was investigated in comparison with pure Mg. Microstructures of the Mg-2Zn-0.5Sr-xHA composites (x= 0, 0.1 and 0.3 wt%) were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). Results of tensile tests at room temperature show that yield strength (YS) of Mg- 2Zn-0.5Sr/HA composites increases significantly, but the ultimate tensile strength (UTS) and elongation decrease with the addition of HA particles from 0 up to 0.3 wt%. Bio-corrosion behavior was investigated by immersion tests and electrochemical tests. Electrochemical tests show that corrosion potential (Ecorr) of Mg-2Zn-0.5Sr/HA composites significantly shifts toward nobler direction from -1724 to -1660 mVscE and the corrosion current density decreases from 479.8 to 280.8 p.Acm^-2 with the addition of HA particles. Immersion tests show that average corrosion rate of Mg-2Zn-0.BSr/HA composites decreases from 11.7 to 9.1 mm/year with the addition of HA particles from 0 wt% up to 0.3 wt%. Both microstructure and mechanical properties can be attributed to grain refinement and mechanical bonding of HA particles with second phases and α-Mg matrix. Bio-corrosion behavior can be attributed to grain refinement and the formation of a stable and dense CaHPO4 protective film due to the adsorption of Ca^2+ on HA particles. Our analysis shows that the Mg-2Zn-0.5Sr/0.3HA with good strength and corrosion resistance can be a good material candidate for biomedical applications.
基金financially supported by the State Key Laboratory for Mechanical Behavior of Materials (No. 20151712)
文摘In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resulting Mg-Al/Al N composites were investigated. It showed that the 5 wt% AlN reinforcements led to the highest densification and bending strength. The total strengthening effect of AlN particles was predicted by considering the contributions of CTE mismatch between the matrix and the particles,load bearing and Hall-Petch mechanism. The results revealed that the increase of dislocation density,the change of Mg17Al12 phase morphology, and the effective load transfer were the major strengthening contributors to the composites. The fracture of the composites altered from plastic to brittle mode with increasing reinforcement content. The regions of clustered particles in the composites were easy to be damaged under external load, and the fracture occurred mainly along grain boundaries.
基金National Natllral S(tience l.'oundation of China (No. 59631080).
文摘The interfacial microstructure and tensile properties of the squeeze cast SiCw/AZ91 Mg composites were characterized. There exist uniform, line and discrete MgO particles at the interface between SiC whisker and magnesium in the composites using acid aluminum phosphate binder. The interfacial reaction products MgO are beneficial to interfacial bonding between SiCw and the Mg matrix. resulting in an improvement of the mechanical properties of the composite.
基金supported by the National Nature Science Foundation of China (Nos. 51472203, 51521061, 51575447 and 51432008)
文摘2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between fibers and matrix and protect the fiber, pyrolytic carbon(Py C) coating was deposited on the surface of T700 carbon fiber by chemical vapor deposition(CVD). Microstructure observation of the composites revealed that the composites were well fabricated by LSEVI. The segregation of aluminum at fiber surface led to the formation of Mg_(17)Al_(12) precipitates at the interface. The aluminum improved the infiltration of the alloy and Py C coating protected the fibers effectively. The ultimate tensile strength of 2D-C_f/AZ91 D composites was about 400 MPa. The fracture process of 2D-C_f/AZ91 D composites was transverse fiber interface cracking–matrix transferring load–longitudinal fibers bearing load–longitudinal fibers breaking.
文摘Three different castables based on the Al_2O_3–MgO –CaO system were prepared as steel-ladle purging plug refractories: corundum-based low-cement castable(C-LCC), corundum-spinel-based low-cement castable(C-S-LCC), and corundum-spinel no-cement castable(C-S-NCC)(hydratable alumina(ρ-Al_2O_3) bonded). The fracture behavior at room temperature was tested by the method of "wedge-splitting" on samples pre-fired at different temperatures; the specific fracture energy G′f and notched tensile strength σNT were obtained from these tests. In addition, the Young's modulus E was measured by the method of resonance frequency of damping analysis(RFDA). The thermal stress resistance parameter R′′′′ calculated using the values of G′f, σNT, and E was used to evaluate the thermal shock resistance of the materials. According to the microstructure analysis results, the sintering effect and the bonding type of the matrix material were different among these three castables, which explains their different fracture behaviors.
文摘The effect of adding Ta on the changes of microstructure and Ms temperature of a dualphase shape memory alloy with compositions of (Ni51 Ti49)1 -x.Tax. and Ni50-Ti50 -g.Ta.g were systematically studied. An optical microscope, SEM, X-ray diffraction and DSC were utilized in this work. The evolution of the microstructure as a function of Ta content was characterized. The variation of the Ni/Ti ratio in the NiTi phase plays an important role in the change of the Ms temperatures due to the addition of Ta. A pseudobinary NiTi-Ta phase diagram was proposed based on these results.
基金Founded by the National Natural Science Foundation of China(No.91216302)the National Program on Key Basic Research Project of the People's Republic of China(No.2015CB655200)
文摘ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition(LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC coatings were investigated. ZrC coating grew in an island-layer mode. The formation of coating was dominated by the nucleation of ZrC in the initial 20 minutes, and the rapid nucleation generated a fine-grained structure of ZrC coating. When the deposition time was over 30 min, the growth of coating was dominated by that of crystals, giving a column-arranged structure. Energy dispersive X-ray spectroscopy showed that the molar ratio of carbon to zirconium was near 1:1 in ZrC coating, and X-ray photoelectron spectroscopy showed that ZrC was the main phase in coatings, accompanied by about 2.5mol% ZrO2 minor phase.
基金Founded by the National Natural Science Foundation of China(51371094 and 51161015)the Hebei University Experiment Center Project(sy2015091)
文摘Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition.
基金Funded by the Nuclear Power Major Project(No.2011zx06004-002)
文摘Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level.
基金Funded by the National Natural Science Foundation of China(No.11135007)
文摘The stress–strain behavior and strain rate sensitivity of pre-strained Ni80Cr20(Ni20Cr) were studied at strain rates from 4.8×10^(–4)s^(–1) to 1.1×10^(–1)s^(–1). Specimens were prepared through cold drawing with abnormal plastic deformation. The texture of the specimen was characterized using electron backscatter diffraction. Results revealed that the ultimate tensile strength and ductility of the pre-strained Ni20Cr microwires simultaneously increased with increasing strain rate. Twinning-induced negative strain rate sensitivity was discovered. Positive strain rate sensitivity was present in fracture flow stress, whereas negative strain rate sensitivity was detected in flow stress values of σ_(0.5%) and σ_(1%). Tensile test of the pre-strained Ni20Cr showed that twinning deformation predominated, whereas dislocation slip deformation dominated when twinning deformation reached saturation. The trends observed in the fractions of 2°-5°, 5°-15°, and 15°-180° grain boundaries confirmed that twinning deformation dominated the first stage.
基金Project supported by the National Basic Research Program of China(973 program,2012CBA01205)
文摘A novel process was proposed to strengthen the decomposition of the mixed rare earth concentrate by utilizing the microwave radiation.Mineralogical information on the mechanisms by which microwave heating improved the leaching behavior of rare earth elements(REEs),and an interpretation of the interrelationship between mineralogy,decomposition process,and leaching process were provided in this study.The influences of the temperature,time of microwave heating and contents of NaO H(mass ratio of NaO H to mixed rare earth concentrate)on the decomposition of mixed rare earth concentrate were investigated.The results revealed that the temperature was the main factor affecting the decomposition process.The recovery of REEs by hydrochloric acid leaching reached 93.28% under the microwave heating conditions:140 oC,30 min and 35.35% NaO H.The BET specific surface area and SEM analysis indicated that the particles of mixed rare earth concentrate were non-hole,while the particles presented a porous structure after heating the concentrate by microwave radiation.For the microwave treated sample after water leaching,the BET specific surface area was 11.04 m^2/g,which was higher than the corresponding values(6.94 m^2/g)for the mixed rare earth concentrate.This result could be attributed to the phase changes of bastnaesite and monazite,and a number of cracks induced by thermal stress.The increase of BET specific surface area resulted in an increase of the recovery of REEs by promoting interaction within the system of acid leaching.
基金support by the Science and Technology Planning Project of Hebei Province,China(Grant No.15273703D)
文摘Diesel particulate matter(DPF) is usually employed to meet the stringent regulations on particulate matter(PM) emissions for diesel engine. To resolve the DPF regeneration problem, comprehensive information about the factors influencing PM oxidation behaviors must be understood. Large amounts of factors related to PM oxidation activity have been investigated, however, some relations are still ambiguous. This paper reviews the factors related to PM oxidation activity that the factors are divided into the engine-correlated and engine-uncorrelated factors. The methods with both advantages and disadvantages to test the oxidation behaviors are introduced. The microstructure and ingredient being fundamental factors affecting PM oxidation behaviors are as the principle line to correlate PM oxidation behaviors and engine-correlated factors. The relations of engine-correlated factors with oxidation behaviors are obtained though advanced technologies that are mutual complementation. The engine-uncorrelated factors are also reviewed that these factors are vital to oxidation activity changes. Multiple-factor analysis rather than single-factor analysis should be developed to make the oxidation behaviors of diesel PM more clear.