The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ...The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.展开更多
Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pell...Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.展开更多
The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepar...The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepared by vacuum arc melting.The microstructure,mechanical properties,and related influencing mechanisms were systematically investigated.The results indicate that the solidification microstructure of the Ti46Al1.5Cr8Nb-xTa alloys comprises theγ-TiAl phase,α_(2)-Ti_(3)Al phase,and B2 phase.As the Ta content increases from 0.2 at.%to 1.0 at.%,the content ofα_(2)phase and B2 phase increases,while theγphase content decreases.Among them,the B2 phase shows the most pronounced change,being significantly refined,with its content increasing from 12.49%to 21.91%.In addition,the average size of the lamellar colony decreases from 160.65 to 94.44μm.The addition of the Ta element shifts the solidification path toward lower aluminum concentrations,leading to changes in phase content.The tantalum-induced increase in the B2 phase and enhanced supercooling at the solidification front provide the basis for lamellar colony refinement.Compressive testing at room temperature reveals that the Ti46 Al1.5 Cr8 Nb0.4 Ta alloy exhibits optimal compressive properties,achieving a compressive strength of 2,434 MPa and a compressive strain of 33.1%.The improvement of its properties is attributed to a combination of lamellar colony refinement,solid solution strengthening resulting from the incorporation of Ta element,and a reduction in the c/a of theγphase.展开更多
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle...The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.展开更多
The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron co...The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron concentration−relative electronegativity(VEC−REN)composite descriptor was developed to effectively predict the mechanical properties of HEBs.The results demonstrate that with a fixed VEC,the rise of the REN makes HEBs harder but more brittle when the electronegativity of doped TM atoms is lower than that of boron atoms.However,HEBs become softer and more ductile as REN increases if the doped TM atoms have higher electronegativity than boron atoms.The VEC−REN composite descriptor can accurately classify and predict the mechanical properties of HEBs with different components,which provides important theoretical guidance for the rapid design and development of novel high-entropy ceramic materials.展开更多
(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperatu...(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials.展开更多
Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of re...Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as not...High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area.展开更多
The periodontal ligament(PDL)plays a crucial role in transmitting and dispersing occlusal force,acting as mechanoreceptor for muscle activity during chewing,as well as mediating orthodontic tooth movement.It transform...The periodontal ligament(PDL)plays a crucial role in transmitting and dispersing occlusal force,acting as mechanoreceptor for muscle activity during chewing,as well as mediating orthodontic tooth movement.It transforms mechanical stimuli into biological signals,influencing alveolar bone remodeling.Recent research has delved deeper into the biological and mechanical aspects of PDL,emphasizing the importance of understanding its structure and mechanical properties comprehensively.This review focuses on the latest findings concerning both macro-and micro-structural aspects of the PDL,highlighting its mechanical characteristics and factors that influence them.Moreover,it explores the mechanotransduction mechanisms of PDL cells under mechanical forces.Structure-mechanics-mechanotransduction interplay in PDL has been integrated ultimately.By providing an up-to-date overview of our understanding on PDL at various scales,this study lays the foundation for further exploration into PDL-related biomechanics and mechanobiology.展开更多
Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-pla...Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications.展开更多
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and capro...Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with 400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources.展开更多
We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)proc...We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)process.The coherent photon–phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator.The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly.When the Duffing nonlinearity is weak,the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS.Our scheme may be extended to other quantum systems to study novel quantum effects.展开更多
The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and...The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.展开更多
The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy beco...The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature.展开更多
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh...Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential.展开更多
Understanding the mechanical behavior of diagenetic mineral granules and interfaces in granite provides essential experimental references for constructing micromechanical models of granite.The micromechanical behavior...Understanding the mechanical behavior of diagenetic mineral granules and interfaces in granite provides essential experimental references for constructing micromechanical models of granite.The micromechanical behavior of Yanshanian granite is investigated using scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS)and nanoindentation tests.The results demonstrate transitional mechanical properties at mineral interfaces.The elastic modulus and hardness exhibit intermediate values between adjacent mineral phases.The higher plasticity indices at the interfaces suggest higher plastic deformation capacity of hard-phase minerals in these regions.Additionally,fracture toughness measurements of minerals and interfaces were obtained,with interfacial values ranging from 0.90 to 1.63 MPa·m^(0.5).The analysis of mechanical property relationships shows a significant positive linear correlation between rock-scale elastic modulus and fracture toughness.However,this correlation is substantially lower at the mineral scale,demonstrating a scale effect in the relationship of different mechanical properties.展开更多
With the economic and social development of the country,vocational education is playing an increasingly significant role in cultivating highly skilled talents.However,the mechanical drawing courses in vocational colle...With the economic and social development of the country,vocational education is playing an increasingly significant role in cultivating highly skilled talents.However,the mechanical drawing courses in vocational colleges still face numerous challenges in the teaching process,such as outdated textbook content,inadequate practical resources,weak teaching staff,and low student interest.This paper aims to explore these issues and propose corresponding coping strategies.The findings of this study not only provide specific improvement suggestions for vocational colleges but also emphasize the importance of these strategies in enhancing students’comprehensive abilities and promoting the development of vocational education.By addressing these challenges,this paper contributes to the enhancement of teaching quality and the overall advancement of vocational skills education.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.T2325004 and 52161160330)the National Natural Science Foundation of China (Grants No.12504233)+2 种基金Advanced MaterialsNational Science and Technology Major Project (Grant No.2024ZD0606900)the Talent Hub for “AI+New Materials” Basic Researchthe Key Research and Development Program of Ningbo (Grant No.2025Z088)。
文摘The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.
基金financial support by the National Key Research and Development Program of China(No.2023YFC2907801)the Hunan Provincial Natural Science Foundation of China(No.2023JJ40760)the Scientific and Technological Project of Yunnan Precious Metals Laboratory,China(No.YPML-2023050276)。
文摘Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.
基金the financial support by the Major Science and Technology Achievement Transformation Project in Heilongjiang Province(No.ZC2023SH0075)the National Natural Science Foundation of China(Nos.52425401,U2441255,52474377,and 52371015)+1 种基金the Young Elite Scientists Sponsorship·Program by CAST(No.2021QNRC001)the Henan Provincial Key Research and Development&Promotion Special Program(No.251111231400)。
文摘The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepared by vacuum arc melting.The microstructure,mechanical properties,and related influencing mechanisms were systematically investigated.The results indicate that the solidification microstructure of the Ti46Al1.5Cr8Nb-xTa alloys comprises theγ-TiAl phase,α_(2)-Ti_(3)Al phase,and B2 phase.As the Ta content increases from 0.2 at.%to 1.0 at.%,the content ofα_(2)phase and B2 phase increases,while theγphase content decreases.Among them,the B2 phase shows the most pronounced change,being significantly refined,with its content increasing from 12.49%to 21.91%.In addition,the average size of the lamellar colony decreases from 160.65 to 94.44μm.The addition of the Ta element shifts the solidification path toward lower aluminum concentrations,leading to changes in phase content.The tantalum-induced increase in the B2 phase and enhanced supercooling at the solidification front provide the basis for lamellar colony refinement.Compressive testing at room temperature reveals that the Ti46 Al1.5 Cr8 Nb0.4 Ta alloy exhibits optimal compressive properties,achieving a compressive strength of 2,434 MPa and a compressive strain of 33.1%.The improvement of its properties is attributed to a combination of lamellar colony refinement,solid solution strengthening resulting from the incorporation of Ta element,and a reduction in the c/a of theγphase.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051)+5 种基金Open Research Fund of State Key Laboratory of Materials for Integrated Circuits(SKLJC-K2024-12)the Shanghai Sailing Program(23YF1402200,23YF1402400)Natural Science Foundation of Jiangsu Province(BK20240424)Taishan Scholar Foundation of Shandong Province(tsqn202408006)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University.
文摘The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.
基金the National Natural Science Foundation of China (Nos. 52071179, 52271033)the Key Program of National Natural Science Foundation of China (No. 51931003)+2 种基金the Natural Science Foundation of Jiangsu Province, China (No. BK20221493)the Jiangsu Province Leading Edge Technology Basic Research Major Project, China (No. BK20222014)the Foundation of “Qinglan Project” for Colleges and Universities in Jiangsu Province, China。
文摘The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron concentration−relative electronegativity(VEC−REN)composite descriptor was developed to effectively predict the mechanical properties of HEBs.The results demonstrate that with a fixed VEC,the rise of the REN makes HEBs harder but more brittle when the electronegativity of doped TM atoms is lower than that of boron atoms.However,HEBs become softer and more ductile as REN increases if the doped TM atoms have higher electronegativity than boron atoms.The VEC−REN composite descriptor can accurately classify and predict the mechanical properties of HEBs with different components,which provides important theoretical guidance for the rapid design and development of novel high-entropy ceramic materials.
基金supported by the National Natural Science Foundation of China(Nos.92166105 and 52005053)High-Tech Industry Science and Technology Innovation Leading Program of Hunan Province(No.2020GK2085)the Science and Technology Innovation Program of Hunan Province(No.2021RC3096).
文摘(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials.
基金Funded by Natural Science Foundation of Guangxi(No.2025GXNSFBA069565)Guangxi Science and Technology Program(No.AD25069101)Guangxi Bagui Scholars Fund。
文摘Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
基金supported by National Natural Science Foundation of China(Grant No.52171032)Hebei Natural Science Foundation(Grant No.E2023501002)Fundamental Research Funds for the Central Universities(Grant No.2024GFYD003)。
文摘High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area.
基金supported by the National Natural Science Foundation of China(32271416)Sichuan Provincial Science and Technology program(2022YFQ0002).
文摘The periodontal ligament(PDL)plays a crucial role in transmitting and dispersing occlusal force,acting as mechanoreceptor for muscle activity during chewing,as well as mediating orthodontic tooth movement.It transforms mechanical stimuli into biological signals,influencing alveolar bone remodeling.Recent research has delved deeper into the biological and mechanical aspects of PDL,emphasizing the importance of understanding its structure and mechanical properties comprehensively.This review focuses on the latest findings concerning both macro-and micro-structural aspects of the PDL,highlighting its mechanical characteristics and factors that influence them.Moreover,it explores the mechanotransduction mechanisms of PDL cells under mechanical forces.Structure-mechanics-mechanotransduction interplay in PDL has been integrated ultimately.By providing an up-to-date overview of our understanding on PDL at various scales,this study lays the foundation for further exploration into PDL-related biomechanics and mechanobiology.
基金supported by the National Natural Science Foundations of China(Nos.12272411 and 42007259)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,the China University of Mining&Technology(No.SKLGDUEK2207)the Department of Science and Technology of Shaanxi Province(Nos.2022KXJ-107 and 2022JC-LHJJ-16).
文摘Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications.
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
基金financially supported by the Beijing Natural Science Foundation,China (No.JQ21028)the National Natural Science Foundation of China (Nos.52311530070,52278326,and 52004015)+2 种基金the Major National Science and Technology Project for Deep Earth,China (No.2024ZD1003805)the Project from PetroChina RIPED:the Study on the evolution law of Mineral Structure and Rock Mechanical Properties Under Ultra-High Temperature Conditions (No.2022-KFKT-02)the Fundamental Research Funds for the Central Universities of China (No.FRF-IDRY-20-003,Interdisciplinary Research Project for Young Teachers of USTB)。
文摘Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with 400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources.
基金Project supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202400624)the Natural Science Foundation of Chongqing CSTC(Grant No.CSTB2022NSCQBHX0020)+3 种基金the China Electronics Technology Group Corporation 44th Research Institute(Grant No.6310001-2)the Project Grant“Noninvasive Sensing Measurement based on Terahertz Technology”from Province and MOE Collaborative Innovation Centre for New Generation Information Networking and Terminalsthe Key Research Program of CQUPT on Interdisciplinary and Emerging Field(A2018-01)the Venture&Innovation Support program for Chongqing Overseas Returnees Year 2022。
文摘We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)process.The coherent photon–phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator.The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly.When the Duffing nonlinearity is weak,the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS.Our scheme may be extended to other quantum systems to study novel quantum effects.
文摘The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.
基金National Natural Science Foundation of China(U2241242)National Key R&D Program of China(2023YFB3812000,2021YFA0716502)。
文摘The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature.
基金the Puncak RM for the project under the grant 6733204-13069 to carry out the experiments。
文摘Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential.
基金funded by the National Natural Science Foundation of China(Nos.52422403 and U22A20166)the Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project(No.2024ZD1003903)+1 种基金the Department of Science and Technology of Guangdong Province(No.2019ZT08G315)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012654).
文摘Understanding the mechanical behavior of diagenetic mineral granules and interfaces in granite provides essential experimental references for constructing micromechanical models of granite.The micromechanical behavior of Yanshanian granite is investigated using scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS)and nanoindentation tests.The results demonstrate transitional mechanical properties at mineral interfaces.The elastic modulus and hardness exhibit intermediate values between adjacent mineral phases.The higher plasticity indices at the interfaces suggest higher plastic deformation capacity of hard-phase minerals in these regions.Additionally,fracture toughness measurements of minerals and interfaces were obtained,with interfacial values ranging from 0.90 to 1.63 MPa·m^(0.5).The analysis of mechanical property relationships shows a significant positive linear correlation between rock-scale elastic modulus and fracture toughness.However,this correlation is substantially lower at the mineral scale,demonstrating a scale effect in the relationship of different mechanical properties.
基金support from the Science and Technology Key Project of Beijing Polytechnic(Project Leader:Jinru Ma,No.2024X008-KXZ).
文摘With the economic and social development of the country,vocational education is playing an increasingly significant role in cultivating highly skilled talents.However,the mechanical drawing courses in vocational colleges still face numerous challenges in the teaching process,such as outdated textbook content,inadequate practical resources,weak teaching staff,and low student interest.This paper aims to explore these issues and propose corresponding coping strategies.The findings of this study not only provide specific improvement suggestions for vocational colleges but also emphasize the importance of these strategies in enhancing students’comprehensive abilities and promoting the development of vocational education.By addressing these challenges,this paper contributes to the enhancement of teaching quality and the overall advancement of vocational skills education.