Acknowledged as a highly versatile manufacturing technology,additive manufacturing holds the potential to transform traditional manufacturing practices in the future.This paper provides a comprehensive review of the l...Acknowledged as a highly versatile manufacturing technology,additive manufacturing holds the potential to transform traditional manufacturing practices in the future.This paper provides a comprehensive review of the latest processes for manufacturing multi-material structural components using additive manufacturing technologies.It discusses the most recent applications of these processes in the fields of automotive,aerospace,biomedical,and dental,and presents a systematic overview of commonly used methods in multi-material additive manufacturing.展开更多
Due to space availability limitations and high land costs,there is an increasing development of multi-floor manufacturing(MFM)systems in urban and industrial areas.The problem of coordination in a multi-floor manufact...Due to space availability limitations and high land costs,there is an increasing development of multi-floor manufacturing(MFM)systems in urban and industrial areas.The problem of coordination in a multi-floor manufacturing process,in the Ramadge Wonham framework,is introduced.The manufacturing chain of each floor and the elevator system are modeled in the form of finite deterministic automata.The models of the multi-floor manufacturing process are parametric with respect to the number of floors and the number of manufacturing machines on each floor.The coordination desired performance is formulated in the form of desired regular languages in analytic forms.The languages are realized by appropriate supervisors in the form of finite deterministic automata.The models of the supervisors are also parametric with respect to the number of floors and the number of manufacturing machines on each floor.The total control of the coordination of the multi-floor manufacturing process is accomplished via a modular supervisory control architecture.The complexity of the supervisors as well as the complexity of the total modular supervisory architecture are determined in analytic forms with respect to the number of floors and the number of manufacturing machines on each floor.The special case of a two floor manufacturing process is presented as an illustrative example.展开更多
Compliant micromechanisms(CMMs)acquire mobility from the deflection of elastic members and have been proven to be robust by millions of silicon MEMS devices.However,the limited deflection of silicon impedes the realiz...Compliant micromechanisms(CMMs)acquire mobility from the deflection of elastic members and have been proven to be robust by millions of silicon MEMS devices.However,the limited deflection of silicon impedes the realization of more sophisticated CMMs,which often require larger deflections.Recently,some novel manufacturing processes have emerged but are not well known by the community.In this paper,the realization of CMMs is reviewed,aiming to provide help to mechanical designers to quickly find the proper realization method for their CMM designs.To this end,the literature surveyed was classified and statistically analyzed,and representative processes were summarized individually to reflect the state of the art of CMM manufacturing.Furthermore,the features of each process were collected into tables to facilitate the reference of readers,and the guidelines for process selection were discussed.The review results indicate that,even though the silicon process remains dominant,great progress has been made in the development of polymer-related and composite-related processes,such as micromolding,SU-8 process,laser ablation,3D printing,and the CNT frameworking.These processes result in constituent materials with a lower Young’s modulus and larger maximum allowable strain than silicon,and therefore allow larger deflection.The geometrical capabilities(e.g.,aspect ratio)of the realization methods should also be considered,because different types of CMMs have different requirements.We conclude that the SU-8 process,3D printing,and carbon nanotube frameworking will play more important roles in the future owing to their excellent comprehensive capabilities.展开更多
Sustainable production depends on the optimization of manufacturing processes.The assessment of carbon emissions in manufacturing is crucial for achieving sustainability.However,a comprehensive systematic framework to...Sustainable production depends on the optimization of manufacturing processes.The assessment of carbon emissions in manufacturing is crucial for achieving sustainability.However,a comprehensive systematic framework to reflect the carbon emission regularity of manufacturing processes is currently lacking.This study focuses on the modeling and evaluation of carbon emissions by considering machining processes and multiple factors.First,carbon emission models for machining processes,such as turning,milling,and drilling,are systematically summarized by considering power consumption.Second,the influence of system parameters on carbon emissions is analyzed.Results show that cutting depth exerts a substantial effect on carbon emissions,and material removal rate has minimal influence.Last,the emission reduction mechanism and performance of novel sustainable machining processes are examined to contribute to carbon emission reduction.This study helps in systematically understanding carbon emissions in manufacturing processes,providing support for the further development of sustainable manufacturing.展开更多
The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manuf...The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manufacturing process employed to manufacture complex 3D objects without tools,molds,assembly,and joining.Currently,commercial AM techniques mostly use homogeneous composition with simplified geometric descriptions,employing a single material across the entire component to achieve functional graded additive manufacturing(FGAM),in contrast to multi-material FGAM with heterogeneous structures.FGMs are widely used in various fields due to their mechanical property advantages.Because FGM plays a significant role in the industrial production,the characteristics and mechanical behaviour of FGMs prepared by AM were reviewed.In this review,the research on FGMs and AM over the past 30 years was reviewed,suggesting that future researchers should focus on the application of artificial intelligence and machine learning technologies in industry to optimize the process parameters of different gradient systems.展开更多
Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CA...Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CAR-NK cell therapy has enabled the development of“off-the-shelf”products that bypass the lengthy and expensive cell manufacturing process1.展开更多
With the growing importance of wearable and portable electronics in modern society and industry,researchers from all over the world have reported on advances in energy harvesting and self-powered sensing technologies....With the growing importance of wearable and portable electronics in modern society and industry,researchers from all over the world have reported on advances in energy harvesting and self-powered sensing technologies.The current review discusses recent developments in triboelectric platforms from a manufacturing perspective,including material,design,application,and industrialization.Manufacturing is an essential component of both industry and technology.The use of a proper manufacturing process enables cutting-edge technology in a lab-scale stage to progress to commercialization and popularization with scalability,availability,commercial advantage,and consistent quality.Furthermore,much literature has emphasized that the most powerful advantage of the triboelectric platform is its wide range of available materials and simple working mechanism,both of which are important characteristics in manufacturing engineering.As a result,different manufacturing processes can be implemented as needed.Because the practical process can have a synergetic effect on the fundamental development,resulting in the growth of both,the development of the triboelectric platform from the standpoint of manufacturing engineering can be further advanced.However,research into the development of a productive manufacturing process is still in its early stages in the field of triboelectric platforms.This review looks at the various manufacturing technologies used in previous studies and discusses the potential benefits of the appropriate process for triboelectric platforms.Given its unique strength,which includes a diverse material selection and a simple working mechanism,the triboelectric platform can use a variety of manufacturing technologies and the process can be optimized as needed.Numerous research groups have clearly demonstrated the triboelectric platform's advantages.As a result,using appropriate manufacturing processes can accelerate the technological advancement of triboelectric platforms in a variety of research and industrial fields by allowing them to move beyond the lab-scale fabrication stage.展开更多
VlseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)has been developed and applied for over twenty-five years,gaining recognition as a prominent multi-criteria decision-making(MCDM)method.Over this period,numer...VlseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)has been developed and applied for over twenty-five years,gaining recognition as a prominent multi-criteria decision-making(MCDM)method.Over this period,numerous studies have explored its applications,conducted comparative analyses,integrated it with other methods,and proposed various modifications to enhance its performance.This paper aims to delve into the fundamental principles and objectives of VIKOR,which aim to maximize group utility and minimize individual regret simultaneously.However,this study identifies a significant limitation in the VIKOR methodology:its process amplifies the weight of individual regret,and the calculated index values further magnify this effect.This phenomenon not only affects the decision-making balance but also leads to the critical issue of ranking reversal,which undermines the reliability of the results.To address these shortcomings,this paper introduces an enhanced version of VIKOR that mitigates the impact of individual regret while preserving the method’s original objectives.This paper validates the effectiveness of the proposed enhanced VIKOR method using various MCDM approaches,including(1)ten different versions of VIKOR and(2)eleven commonly used MCDM methods.Furthermore,this study confirms that the enhanced VIKOR can be effectively applied across various existing VIKOR versions,broadening its adaptability.A sensitivity analysis is additionally performed by adjusting the criteria weights using the ordered weighted averaging method.An illustrative case study involving the selection of a manufacturing process validates the proposed model.The results show that the proposed model is robust and capable of producing more reliable outcomes.It also demonstrates its practicality and effectiveness in real-world decision-making scenarios.展开更多
Nondestructive testing(NDT)methods such as visual inspection and ultrasonic testing are widely applied in manufacturing quality control,but they remain limited in their ability to detect defect characteristics.Visual ...Nondestructive testing(NDT)methods such as visual inspection and ultrasonic testing are widely applied in manufacturing quality control,but they remain limited in their ability to detect defect characteristics.Visual inspection depends strongly on operator experience,while ultrasonic testing requires physical contact and stable coupling conditions that are difficult to maintain in production lines.These constraints become more pronounced when defect-related information is scarce or when background noise interferes with signal acquisition in manufacturing processes.This study presents a non-contact acoustic method for diagnosing defects in scroll compressors during the manufacturing process.The diagnostic approach leverages Mel-frequency cepstral coefficients(MFCC),and shorttime Fourier transform(STFT)parameters to capture the rotational frequency and harmonic characteristics of the scroll compressor.These parameters enable the extraction of defect-related features even in the presence of background noise.A convolutional neural network(CNN)model was constructed using MFCCs and spectrograms as image inputs.The proposed method was validated using acoustic data collected from compressors operated at a fixed rotational speed under real manufacturing process.The method identified normal operation and three defect types.These results demonstrate the applicability of this method in noise-prone manufacturing environments and suggest its potential for improving product quality,manufacturing reliability and productivity.展开更多
Additive manufacturing(AM)has emerged as one of the most utilized processes in manufacturing due to its ability to produce complex geometries with minimal material waste and greater design freedom.Laser-based AM(LAM)t...Additive manufacturing(AM)has emerged as one of the most utilized processes in manufacturing due to its ability to produce complex geometries with minimal material waste and greater design freedom.Laser-based AM(LAM)technologies use high-power lasers to melt metallic materials,which then solidify to form parts.However,it inherently induces self-equilibrating residual stress during fabrication due to thermal loads and plastic deformation.These residual stresses can cause defects such as delamination,cracking,and distortion,as well as premature failure under service conditions,necessitating mitigation.While post-treatment methods can reduce residual stresses,they are often costly and time-consuming.Therefore,tuning the fabrication process parameters presents a more feasible approach.Accordingly,in addition to providing a comprehensive view of residual stress by their classification,formation mechanisms,measurement methods,and common post-treatment,this paper reviews and compares the studies conducted on the effect of key parameters of the LAM process on the resulting residual stresses.This review focuses on proactively adjusting LAM process parameters as a strategic approach to mitigate residual stress formation.It provides a result of the various parameters influencing residual stress outcomes,such as laser power,scanning speed,beam diameter,hatch spacing,and scanning strategies.Finally,the paper identifies existing research gaps and proposes future studies needed to deepen understanding of the relationship between process parameters and residual stress mitigation in LAM.展开更多
Accessibility is a kind of important design feature of products,and accessibility analysis has been acknowledged as a powerful tool for solving computational manufacturing problems arising from different manufacturing...Accessibility is a kind of important design feature of products,and accessibility analysis has been acknowledged as a powerful tool for solving computational manufacturing problems arising from different manufacturing processes.After exploring the relations among approachability,accessibility and visibility,a general method for accessibility analysis using visibility cones (VC) is proposed.With the definition of VC of a point,three kinds of visibility of a feature,namely complete visibility cone (CVC),partial visibility cone (PVC) and local visibility cone (LVC),are defined.A novel approach to computing VCs is formulated by identifying C-obstacles in the C-space,for which a general and efficient algorithm is proposed and implemented by making use of visibility culling.Lastly,we discuss briefly how to realize accessibility analysis in numerically controlled (NC) machining planning,coordinate measuring machines (CMMs) inspection planning and assembly sequence planning with the proposed methods.展开更多
Northern Anhui was an important region for diverse bronze culture convergence and extensive metal resource circulation in the Pre-Qin Period.In this paper,metallographic microstructure analysis,chemical composition an...Northern Anhui was an important region for diverse bronze culture convergence and extensive metal resource circulation in the Pre-Qin Period.In this paper,metallographic microstructure analysis,chemical composition analysis,and lead isotope ratio analysis were conducted on 12 samples of 6 Warring States Period(476–221 BCE)bronze vessels excavated from Chutai Cemetery M1,Fuyang,Anhui Province,revealing the integrated application of diversified manufacturing processes,such as casting,forging,cold working,and welding and multiple metal minerals.The analytical results showed that 2 Ding vessels(鼎)were made by casting,and 2 He vessels(盒)and 2 Dui vessels(敦)were made by forging followed by cold working.These two types of bronze vessels made by different manufacturing processes have significantly distinct alloy ratios and mineral sources,among which the Cu and Sn contents of the 2 cast bronze vessels are lower and the Pb content is higher,while the Cu and Sn contents of the 4 forged bronze vessels are higher and the Pb content is lower.The lead minerals of the two types of bronze vessels might come from Western Henan and the middle and lower reaches of the Yangtze River,respectively.In addition,the 3 pieces of solder used to weld bronze vessels were all made of pure Sn,their metal minerals should come from the densely distributed area of tin ore in Southern China,and Sn solders were mainly discovered in the Chu culture area during the Eastern Zhou Period.展开更多
Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods ...Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods becomes challenging due to the continuous development and numerous processing parameters involved in steel production.To address this challenge,the application of machine learning methods becomes crucial in establishing complex relationships between manufacturing processes and steel performance.This review begins with a general overview of machine learning methods and subsequently introduces various performance predictions in steel materials.The classification of performance pre-diction was used to assess the current application of machine learning model-assisted design.Several important issues,such as data source and characteristics,intermediate features,algorithm optimization,key feature analysis,and the role of environmental factors,were summarized and analyzed.These insights will be beneficial and enlightening to future research endeavors in this field.展开更多
Manufacturing is the application of labor,tools,machines,chemical and biological processing,to an original raw material by changing its physical and geometrical characteristics,in order to make finished products.Since...Manufacturing is the application of labor,tools,machines,chemical and biological processing,to an original raw material by changing its physical and geometrical characteristics,in order to make finished products.Since the first industrial revolution,to accommodate the large-scale production,tremendous changes have happened to manufacturing through the innovations of technology,organization,management,transportation and communication.This work first reviews the highvolume low-mix process by focusing on the quantity production,transfer line and single model assembly line.Then,it reviews the high-volume high-mix process.For such a process type,mixed/multi model assembly line is usually adopted.Hence,two main decisions on them,i.e.,balancing and,sequencing are reviewed.Thereafter,it discusses the low-volume high-mix process in detail.Then,technology gap and future work is discussed,and at last,conclusions are given.展开更多
Product and manufacturing process developments are knowledge intensive. For rapid product developments in today′s competitive global marketplace, we need tools to facilitate the effective utilization of critical des...Product and manufacturing process developments are knowledge intensive. For rapid product developments in today′s competitive global marketplace, we need tools to facilitate the effective utilization of critical design and manufacturing knowledge obtained during the previous product developments. The Internet technology has very rapidly evolved over past few years. The web is being increasingly used to support various activities of the pro duct development process. Java is a programming language that is highly tuned for the web environment. This paper is concerned with providing the solution of web based manufacturing process development. The architecture of web based application and the implementation of web based manufacturing process developer are discussed.展开更多
In order to promote the intelligent transformation and upgrading of the steel industry, intelligent technology features based on the current situation and challenges of the steel industry are discussed in this paper. ...In order to promote the intelligent transformation and upgrading of the steel industry, intelligent technology features based on the current situation and challenges of the steel industry are discussed in this paper. Based on both domestic and global research, functional analysis, reasonable positioning, and process optimization of each aspect of steel making are expounded. The current state of molten steel quality and implementation under narrow window control is analyzed. A method for maintaining stability in the narrow window control technology of steel quality is proposed, controlled by factors including composition, temperature, time, cleanliness, and consumption(raw material). Important guidance is provided for the future development of a green and intelligent steel manufacturing process.展开更多
Against the realistic background of excess production capacity, product structure imbalance, and high material and energy consumption in steel enterprises, the implementation of operation optimization for the steel ma...Against the realistic background of excess production capacity, product structure imbalance, and high material and energy consumption in steel enterprises, the implementation of operation optimization for the steel manufacturing process is essential to reduce the production cost, increase the production or energy efficiency, and improve production management. In this study, the operation optimization problem of the steel manufacturing process, which needed to go through a complex production organization from customers' orders to workshop production, was analyzed. The existing research on the operation optimization techniques, including process simulation, production planning, production scheduling, interface scheduling, and scheduling of auxiliary equipment, was reviewed. The literature review reveals that, although considerable research has been conducted to optimize the operation of steel production, these techniques are usually independent and unsystematic.Therefore, the future work related to operation optimization of the steel manufacturing process based on the integration of multi technologies and the intersection of multi disciplines were summarized.展开更多
From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship betw...From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.展开更多
Theoretical minimum and actual specific energy consumptions (SEC) of typical manufacturing process (SMP) were studied. Firstly, a process division of a typical SMP in question was conducted with the theory of SEC ...Theoretical minimum and actual specific energy consumptions (SEC) of typical manufacturing process (SMP) were studied. Firstly, a process division of a typical SMP in question was conducted with the theory of SEC analysis. Secondly, an exergy analysis model of a subsystem consisting of several parallel processes and a SEC analysis model of SMP were developed. And finally, based on the analysis models, the SEC of SMP was analyzed by means of the statistical significance. The results show that the SEC of typical SMP comprises the theoretical minimum SEC and the additional SEC derived from the irreversibility~ and the SMP has a theoretical minimum SEC of 6.74 GJ/t and an additional SEC of 19.32 GJ/t, which account for 25.88% and 74.12% of the actual SEC, respectively.展开更多
Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to t...Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization.展开更多
基金supported by the Youth Science Fund Program under National Natural Science Foundation of China(No.52205248).
文摘Acknowledged as a highly versatile manufacturing technology,additive manufacturing holds the potential to transform traditional manufacturing practices in the future.This paper provides a comprehensive review of the latest processes for manufacturing multi-material structural components using additive manufacturing technologies.It discusses the most recent applications of these processes in the fields of automotive,aerospace,biomedical,and dental,and presents a systematic overview of commonly used methods in multi-material additive manufacturing.
基金Open access funding provided by HEAL-Link Greece.
文摘Due to space availability limitations and high land costs,there is an increasing development of multi-floor manufacturing(MFM)systems in urban and industrial areas.The problem of coordination in a multi-floor manufacturing process,in the Ramadge Wonham framework,is introduced.The manufacturing chain of each floor and the elevator system are modeled in the form of finite deterministic automata.The models of the multi-floor manufacturing process are parametric with respect to the number of floors and the number of manufacturing machines on each floor.The coordination desired performance is formulated in the form of desired regular languages in analytic forms.The languages are realized by appropriate supervisors in the form of finite deterministic automata.The models of the supervisors are also parametric with respect to the number of floors and the number of manufacturing machines on each floor.The total control of the coordination of the multi-floor manufacturing process is accomplished via a modular supervisory control architecture.The complexity of the supervisors as well as the complexity of the total modular supervisory architecture are determined in analytic forms with respect to the number of floors and the number of manufacturing machines on each floor.The special case of a two floor manufacturing process is presented as an illustrative example.
基金Supported by Jiangsu University Foundation(Grant No.20JDG37).
文摘Compliant micromechanisms(CMMs)acquire mobility from the deflection of elastic members and have been proven to be robust by millions of silicon MEMS devices.However,the limited deflection of silicon impedes the realization of more sophisticated CMMs,which often require larger deflections.Recently,some novel manufacturing processes have emerged but are not well known by the community.In this paper,the realization of CMMs is reviewed,aiming to provide help to mechanical designers to quickly find the proper realization method for their CMM designs.To this end,the literature surveyed was classified and statistically analyzed,and representative processes were summarized individually to reflect the state of the art of CMM manufacturing.Furthermore,the features of each process were collected into tables to facilitate the reference of readers,and the guidelines for process selection were discussed.The review results indicate that,even though the silicon process remains dominant,great progress has been made in the development of polymer-related and composite-related processes,such as micromolding,SU-8 process,laser ablation,3D printing,and the CNT frameworking.These processes result in constituent materials with a lower Young’s modulus and larger maximum allowable strain than silicon,and therefore allow larger deflection.The geometrical capabilities(e.g.,aspect ratio)of the realization methods should also be considered,because different types of CMMs have different requirements.We conclude that the SU-8 process,3D printing,and carbon nanotube frameworking will play more important roles in the future owing to their excellent comprehensive capabilities.
基金financially supported by the following organizations:the National Natural Science Foundation of China(Grant Nos.52475469,52375447)the Shandong Provincial Natural ScienceFoundation,China(GrantNosZ.R2024ME255 and ZR2024QE100)the Special Fund of Taishan Scholars Project,China(Grant No.tsqn202211179).
文摘Sustainable production depends on the optimization of manufacturing processes.The assessment of carbon emissions in manufacturing is crucial for achieving sustainability.However,a comprehensive systematic framework to reflect the carbon emission regularity of manufacturing processes is currently lacking.This study focuses on the modeling and evaluation of carbon emissions by considering machining processes and multiple factors.First,carbon emission models for machining processes,such as turning,milling,and drilling,are systematically summarized by considering power consumption.Second,the influence of system parameters on carbon emissions is analyzed.Results show that cutting depth exerts a substantial effect on carbon emissions,and material removal rate has minimal influence.Last,the emission reduction mechanism and performance of novel sustainable machining processes are examined to contribute to carbon emission reduction.This study helps in systematically understanding carbon emissions in manufacturing processes,providing support for the further development of sustainable manufacturing.
文摘The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manufacturing process employed to manufacture complex 3D objects without tools,molds,assembly,and joining.Currently,commercial AM techniques mostly use homogeneous composition with simplified geometric descriptions,employing a single material across the entire component to achieve functional graded additive manufacturing(FGAM),in contrast to multi-material FGAM with heterogeneous structures.FGMs are widely used in various fields due to their mechanical property advantages.Because FGM plays a significant role in the industrial production,the characteristics and mechanical behaviour of FGMs prepared by AM were reviewed.In this review,the research on FGMs and AM over the past 30 years was reviewed,suggesting that future researchers should focus on the application of artificial intelligence and machine learning technologies in industry to optimize the process parameters of different gradient systems.
基金supported by grants from the Noncommunicable Chronic Diseases-National Science and Technology Major Project(Grant No.2023ZD0501300)Science Technology Department of Zhejiang Province(Grant No.2021C03117)+2 种基金National Natural Science Foundation of China(Grant No.82350104 and 82170219)Natural Science Foundation of Zhejiang Province,China(Grant No.LY23H080004 and LY24H080001)Medical Health Science and Technology Project of Zhejiang Provincial Health Commission(Grant No.2021KY199)。
文摘Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CAR-NK cell therapy has enabled the development of“off-the-shelf”products that bypass the lengthy and expensive cell manufacturing process1.
基金supported by the National Research Foundation of Korea(NRF)(No.2021R1C1C2009703)supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(RS-2024-00344920)supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant funded by the Ministry of Trade,Industry and Energy of Korea(No.RS2023-00244330)。
文摘With the growing importance of wearable and portable electronics in modern society and industry,researchers from all over the world have reported on advances in energy harvesting and self-powered sensing technologies.The current review discusses recent developments in triboelectric platforms from a manufacturing perspective,including material,design,application,and industrialization.Manufacturing is an essential component of both industry and technology.The use of a proper manufacturing process enables cutting-edge technology in a lab-scale stage to progress to commercialization and popularization with scalability,availability,commercial advantage,and consistent quality.Furthermore,much literature has emphasized that the most powerful advantage of the triboelectric platform is its wide range of available materials and simple working mechanism,both of which are important characteristics in manufacturing engineering.As a result,different manufacturing processes can be implemented as needed.Because the practical process can have a synergetic effect on the fundamental development,resulting in the growth of both,the development of the triboelectric platform from the standpoint of manufacturing engineering can be further advanced.However,research into the development of a productive manufacturing process is still in its early stages in the field of triboelectric platforms.This review looks at the various manufacturing technologies used in previous studies and discusses the potential benefits of the appropriate process for triboelectric platforms.Given its unique strength,which includes a diverse material selection and a simple working mechanism,the triboelectric platform can use a variety of manufacturing technologies and the process can be optimized as needed.Numerous research groups have clearly demonstrated the triboelectric platform's advantages.As a result,using appropriate manufacturing processes can accelerate the technological advancement of triboelectric platforms in a variety of research and industrial fields by allowing them to move beyond the lab-scale fabrication stage.
基金supported by the National Science and Technology Council(NSTC)Taiwan(Grant No.NSTC 113-2222-E-029-005),with additional computational resources provided by the projectThe work of Josef Jablonsky was supprted by the Faculty of Informatics and Statistics,Prague University of Economics and Business。
文摘VlseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)has been developed and applied for over twenty-five years,gaining recognition as a prominent multi-criteria decision-making(MCDM)method.Over this period,numerous studies have explored its applications,conducted comparative analyses,integrated it with other methods,and proposed various modifications to enhance its performance.This paper aims to delve into the fundamental principles and objectives of VIKOR,which aim to maximize group utility and minimize individual regret simultaneously.However,this study identifies a significant limitation in the VIKOR methodology:its process amplifies the weight of individual regret,and the calculated index values further magnify this effect.This phenomenon not only affects the decision-making balance but also leads to the critical issue of ranking reversal,which undermines the reliability of the results.To address these shortcomings,this paper introduces an enhanced version of VIKOR that mitigates the impact of individual regret while preserving the method’s original objectives.This paper validates the effectiveness of the proposed enhanced VIKOR method using various MCDM approaches,including(1)ten different versions of VIKOR and(2)eleven commonly used MCDM methods.Furthermore,this study confirms that the enhanced VIKOR can be effectively applied across various existing VIKOR versions,broadening its adaptability.A sensitivity analysis is additionally performed by adjusting the criteria weights using the ordered weighted averaging method.An illustrative case study involving the selection of a manufacturing process validates the proposed model.The results show that the proposed model is robust and capable of producing more reliable outcomes.It also demonstrates its practicality and effectiveness in real-world decision-making scenarios.
基金supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2023-00239657)in part by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2024-00423772)。
文摘Nondestructive testing(NDT)methods such as visual inspection and ultrasonic testing are widely applied in manufacturing quality control,but they remain limited in their ability to detect defect characteristics.Visual inspection depends strongly on operator experience,while ultrasonic testing requires physical contact and stable coupling conditions that are difficult to maintain in production lines.These constraints become more pronounced when defect-related information is scarce or when background noise interferes with signal acquisition in manufacturing processes.This study presents a non-contact acoustic method for diagnosing defects in scroll compressors during the manufacturing process.The diagnostic approach leverages Mel-frequency cepstral coefficients(MFCC),and shorttime Fourier transform(STFT)parameters to capture the rotational frequency and harmonic characteristics of the scroll compressor.These parameters enable the extraction of defect-related features even in the presence of background noise.A convolutional neural network(CNN)model was constructed using MFCCs and spectrograms as image inputs.The proposed method was validated using acoustic data collected from compressors operated at a fixed rotational speed under real manufacturing process.The method identified normal operation and three defect types.These results demonstrate the applicability of this method in noise-prone manufacturing environments and suggest its potential for improving product quality,manufacturing reliability and productivity.
文摘Additive manufacturing(AM)has emerged as one of the most utilized processes in manufacturing due to its ability to produce complex geometries with minimal material waste and greater design freedom.Laser-based AM(LAM)technologies use high-power lasers to melt metallic materials,which then solidify to form parts.However,it inherently induces self-equilibrating residual stress during fabrication due to thermal loads and plastic deformation.These residual stresses can cause defects such as delamination,cracking,and distortion,as well as premature failure under service conditions,necessitating mitigation.While post-treatment methods can reduce residual stresses,they are often costly and time-consuming.Therefore,tuning the fabrication process parameters presents a more feasible approach.Accordingly,in addition to providing a comprehensive view of residual stress by their classification,formation mechanisms,measurement methods,and common post-treatment,this paper reviews and compares the studies conducted on the effect of key parameters of the LAM process on the resulting residual stresses.This review focuses on proactively adjusting LAM process parameters as a strategic approach to mitigate residual stress formation.It provides a result of the various parameters influencing residual stress outcomes,such as laser power,scanning speed,beam diameter,hatch spacing,and scanning strategies.Finally,the paper identifies existing research gaps and proposes future studies needed to deepen understanding of the relationship between process parameters and residual stress mitigation in LAM.
基金The work was supported by the National Natural Science Foundation of China (Grant Nos. 59990470, 59985004) the National Distinguished Youth Scientific Fund of China (Grant No. 59725514) .
文摘Accessibility is a kind of important design feature of products,and accessibility analysis has been acknowledged as a powerful tool for solving computational manufacturing problems arising from different manufacturing processes.After exploring the relations among approachability,accessibility and visibility,a general method for accessibility analysis using visibility cones (VC) is proposed.With the definition of VC of a point,three kinds of visibility of a feature,namely complete visibility cone (CVC),partial visibility cone (PVC) and local visibility cone (LVC),are defined.A novel approach to computing VCs is formulated by identifying C-obstacles in the C-space,for which a general and efficient algorithm is proposed and implemented by making use of visibility culling.Lastly,we discuss briefly how to realize accessibility analysis in numerically controlled (NC) machining planning,coordinate measuring machines (CMMs) inspection planning and assembly sequence planning with the proposed methods.
基金supported by the National Natural Science Foundation of China(Grant No.41303080)the Youth Promotion Association of the Chinese Academy of Sciences(Grant No.2018499)the National Key R&D Program of China(Grant No.2022YFF0903700)。
文摘Northern Anhui was an important region for diverse bronze culture convergence and extensive metal resource circulation in the Pre-Qin Period.In this paper,metallographic microstructure analysis,chemical composition analysis,and lead isotope ratio analysis were conducted on 12 samples of 6 Warring States Period(476–221 BCE)bronze vessels excavated from Chutai Cemetery M1,Fuyang,Anhui Province,revealing the integrated application of diversified manufacturing processes,such as casting,forging,cold working,and welding and multiple metal minerals.The analytical results showed that 2 Ding vessels(鼎)were made by casting,and 2 He vessels(盒)and 2 Dui vessels(敦)were made by forging followed by cold working.These two types of bronze vessels made by different manufacturing processes have significantly distinct alloy ratios and mineral sources,among which the Cu and Sn contents of the 2 cast bronze vessels are lower and the Pb content is higher,while the Cu and Sn contents of the 4 forged bronze vessels are higher and the Pb content is lower.The lead minerals of the two types of bronze vessels might come from Western Henan and the middle and lower reaches of the Yangtze River,respectively.In addition,the 3 pieces of solder used to weld bronze vessels were all made of pure Sn,their metal minerals should come from the densely distributed area of tin ore in Southern China,and Sn solders were mainly discovered in the Chu culture area during the Eastern Zhou Period.
基金supported by the National Natural Science Foundation of China (No.51701061)the Natural Science Foundation of Hebei Province (Nos.E2023202047 and E2021202075)+1 种基金the Key-Area R&D Program of Guangdong Province (No.2020B0101340004)Guangdong Academy of Science (2021GDASYL-20210102002).
文摘Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods becomes challenging due to the continuous development and numerous processing parameters involved in steel production.To address this challenge,the application of machine learning methods becomes crucial in establishing complex relationships between manufacturing processes and steel performance.This review begins with a general overview of machine learning methods and subsequently introduces various performance predictions in steel materials.The classification of performance pre-diction was used to assess the current application of machine learning model-assisted design.Several important issues,such as data source and characteristics,intermediate features,algorithm optimization,key feature analysis,and the role of environmental factors,were summarized and analyzed.These insights will be beneficial and enlightening to future research endeavors in this field.
基金conducted within the Delta-NTU Corporate Lab for Cyber-Physical Systems with funding support from Delta Electronics Incthe National Research Foundation(NRF)Singapore under the Corp Lab@University Scheme
文摘Manufacturing is the application of labor,tools,machines,chemical and biological processing,to an original raw material by changing its physical and geometrical characteristics,in order to make finished products.Since the first industrial revolution,to accommodate the large-scale production,tremendous changes have happened to manufacturing through the innovations of technology,organization,management,transportation and communication.This work first reviews the highvolume low-mix process by focusing on the quantity production,transfer line and single model assembly line.Then,it reviews the high-volume high-mix process.For such a process type,mixed/multi model assembly line is usually adopted.Hence,two main decisions on them,i.e.,balancing and,sequencing are reviewed.Thereafter,it discusses the low-volume high-mix process in detail.Then,technology gap and future work is discussed,and at last,conclusions are given.
文摘Product and manufacturing process developments are knowledge intensive. For rapid product developments in today′s competitive global marketplace, we need tools to facilitate the effective utilization of critical design and manufacturing knowledge obtained during the previous product developments. The Internet technology has very rapidly evolved over past few years. The web is being increasingly used to support various activities of the pro duct development process. Java is a programming language that is highly tuned for the web environment. This paper is concerned with providing the solution of web based manufacturing process development. The architecture of web based application and the implementation of web based manufacturing process developer are discussed.
基金financially supported by the National Key R&D Program of China (No.2017YFB0304000)the National Natural Science Foundation of China (Nos.52074093, 51874102, 51704080, and 51674092)。
文摘In order to promote the intelligent transformation and upgrading of the steel industry, intelligent technology features based on the current situation and challenges of the steel industry are discussed in this paper. Based on both domestic and global research, functional analysis, reasonable positioning, and process optimization of each aspect of steel making are expounded. The current state of molten steel quality and implementation under narrow window control is analyzed. A method for maintaining stability in the narrow window control technology of steel quality is proposed, controlled by factors including composition, temperature, time, cleanliness, and consumption(raw material). Important guidance is provided for the future development of a green and intelligent steel manufacturing process.
基金financially supported by the National Natural Science Foundation of China (No.51734004)the National Key Research and Development Program of China (No.2017YFB0304005)the National Natural Science Foundation of China (No.51474044)。
文摘Against the realistic background of excess production capacity, product structure imbalance, and high material and energy consumption in steel enterprises, the implementation of operation optimization for the steel manufacturing process is essential to reduce the production cost, increase the production or energy efficiency, and improve production management. In this study, the operation optimization problem of the steel manufacturing process, which needed to go through a complex production organization from customers' orders to workshop production, was analyzed. The existing research on the operation optimization techniques, including process simulation, production planning, production scheduling, interface scheduling, and scheduling of auxiliary equipment, was reviewed. The literature review reveals that, although considerable research has been conducted to optimize the operation of steel production, these techniques are usually independent and unsystematic.Therefore, the future work related to operation optimization of the steel manufacturing process based on the integration of multi technologies and the intersection of multi disciplines were summarized.
基金Item Sponsored by National Basic Research Programof China (200002600)
文摘From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.
基金Item Sponsored by Fundamental Research Funds for the Central Universities of China(N090602007)National Key Technology Research and Development Program in 11th Five-Year Plan Project of China(2006BAE03A09)
文摘Theoretical minimum and actual specific energy consumptions (SEC) of typical manufacturing process (SMP) were studied. Firstly, a process division of a typical SMP in question was conducted with the theory of SEC analysis. Secondly, an exergy analysis model of a subsystem consisting of several parallel processes and a SEC analysis model of SMP were developed. And finally, based on the analysis models, the SEC of SMP was analyzed by means of the statistical significance. The results show that the SEC of typical SMP comprises the theoretical minimum SEC and the additional SEC derived from the irreversibility~ and the SMP has a theoretical minimum SEC of 6.74 GJ/t and an additional SEC of 19.32 GJ/t, which account for 25.88% and 74.12% of the actual SEC, respectively.
基金supported by National Department Fundamental Research Foundation of China (Grant No. B222090014)National Department Technology Fundatmental Foundaiton of China (Grant No. C172009C001)
文摘Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization.