Based on the study on electromagnetic field migration by Zhdanov, we have proposed an improved method for the weak points in the research. Firstly, the initial background resistivity should be determined by using 1-D ...Based on the study on electromagnetic field migration by Zhdanov, we have proposed an improved method for the weak points in the research. Firstly, the initial background resistivity should be determined by using 1-D inversion results. Then in the process of continuation, the results are corrected and calculated layer by layer by the iteration method, so that more exact resistivity can be obtained. Secondly, an improved algorithm for finite-difference equation is studied. According to the property of electromagnetic migration field, the algorithm is designed by means of grids varying with geometric progression in the longitudinal direction. Being improved by the techniques mentioned above, better results are obtained by the new method, which has been verified by both the theory model and practical data.展开更多
A numerical method is put forward in this paper, using the boundary element method (BEM) to model 3D terrain effects on magnetotelluric (MT) surveys, Using vector integral theory and electromagnetic field boundary...A numerical method is put forward in this paper, using the boundary element method (BEM) to model 3D terrain effects on magnetotelluric (MT) surveys, Using vector integral theory and electromagnetic field boundary conditions, the boundary problem of two electromagnetic fields in the upper half space (air) and lower half space (earth medium) was transformed into two vector integral equations just related to the topography : one magnetic equation for computing the magnetic field and the other electrical equation for computing the electrical field. The topography integral is decomposed into a series of integrals in a triangle element. For the integral in a triangle element, we suppose that the electromagnetic field in it is the stack of the electromagnetic field in the homogeneous earth and the topography response which is a constant; so the computation becomes simple, convenient and highly accurate. By decomposition and computation, each vector integral equation can be calculated by solving three linear equations that are related to the three Cartesian directions. The matrix of these linear equations is diagonally dominant and can be solved using the Symmetric Successive Over-Relaxation (SSOR) method. The apparent resistivity curve of MT on two 3D terrains calculated by BEM is shown in this paper.展开更多
We present a case study of applying MT (magnetotellurics) and CSAMT (controlled source audio-frequency magnetotelluries) for geophysical exploration in Jiangxia (江夏), which is located in new industrial develop...We present a case study of applying MT (magnetotellurics) and CSAMT (controlled source audio-frequency magnetotelluries) for geophysical exploration in Jiangxia (江夏), which is located in new industrial developing suburb, where artificial noises are severe. In order to know deep buried structure, fracture status, and characteristics of underground geothermal development about 2 km, we acquired MT and CSAMT data to image subsurface structure through inversion and joint interpretation. The electrical terms of the 2D MT inversion can be divided into three ranges of resistivity values: (1) a highly resistive (〉350 ~.m) layer mainly characteristic of limestone, dolomitic limestone, leuttrite, silicarenite, and packsand; (2) an intermediate resistivity (250-350 Ω·m) layer mainly constituted by siliceous shale, siltstone, battie, and ampelitic limestone; and (3) a low resistivity (20-250 Ω·m) layer, from surface to-100 m, which is related to lacustrine alluvium of Quaternary period; the deep low resistivity layer is interpreted to be representative of the geothermal field. The result of the 2D CSAMT inversion reveals two layers of different electrical resistivities: (1) the first resistive layer (20-250 Ω·m), which is related to lacustrine alluvium of Quaternary period and the heat source, and (2) the second resistive layer (250-3 000Ω·m). The heat source appears to be bounded within the middle of exploration area and shows the N-S trend. Its depth ranges from more than 1.2 to less than 0.7 km, and its resistivity values range from 20 to 250 Ω·m in the northeast part of Jiangxia. Comparing the results of MT and CSAMT method, the positive anomalies are similar and can be assumed to be generated by the same source.展开更多
文摘Based on the study on electromagnetic field migration by Zhdanov, we have proposed an improved method for the weak points in the research. Firstly, the initial background resistivity should be determined by using 1-D inversion results. Then in the process of continuation, the results are corrected and calculated layer by layer by the iteration method, so that more exact resistivity can be obtained. Secondly, an improved algorithm for finite-difference equation is studied. According to the property of electromagnetic migration field, the algorithm is designed by means of grids varying with geometric progression in the longitudinal direction. Being improved by the techniques mentioned above, better results are obtained by the new method, which has been verified by both the theory model and practical data.
基金This paper is supported by the National Natural Science Foundation ofChina (No .40344002) .
文摘A numerical method is put forward in this paper, using the boundary element method (BEM) to model 3D terrain effects on magnetotelluric (MT) surveys, Using vector integral theory and electromagnetic field boundary conditions, the boundary problem of two electromagnetic fields in the upper half space (air) and lower half space (earth medium) was transformed into two vector integral equations just related to the topography : one magnetic equation for computing the magnetic field and the other electrical equation for computing the electrical field. The topography integral is decomposed into a series of integrals in a triangle element. For the integral in a triangle element, we suppose that the electromagnetic field in it is the stack of the electromagnetic field in the homogeneous earth and the topography response which is a constant; so the computation becomes simple, convenient and highly accurate. By decomposition and computation, each vector integral equation can be calculated by solving three linear equations that are related to the three Cartesian directions. The matrix of these linear equations is diagonally dominant and can be solved using the Symmetric Successive Over-Relaxation (SSOR) method. The apparent resistivity curve of MT on two 3D terrains calculated by BEM is shown in this paper.
基金supported by the National Natural Science Foundation of China (No. 40974040)the Deep Exploration in China (No. SinoProbe-01-03-02)the Ministry of Land and Resources of China
文摘We present a case study of applying MT (magnetotellurics) and CSAMT (controlled source audio-frequency magnetotelluries) for geophysical exploration in Jiangxia (江夏), which is located in new industrial developing suburb, where artificial noises are severe. In order to know deep buried structure, fracture status, and characteristics of underground geothermal development about 2 km, we acquired MT and CSAMT data to image subsurface structure through inversion and joint interpretation. The electrical terms of the 2D MT inversion can be divided into three ranges of resistivity values: (1) a highly resistive (〉350 ~.m) layer mainly characteristic of limestone, dolomitic limestone, leuttrite, silicarenite, and packsand; (2) an intermediate resistivity (250-350 Ω·m) layer mainly constituted by siliceous shale, siltstone, battie, and ampelitic limestone; and (3) a low resistivity (20-250 Ω·m) layer, from surface to-100 m, which is related to lacustrine alluvium of Quaternary period; the deep low resistivity layer is interpreted to be representative of the geothermal field. The result of the 2D CSAMT inversion reveals two layers of different electrical resistivities: (1) the first resistive layer (20-250 Ω·m), which is related to lacustrine alluvium of Quaternary period and the heat source, and (2) the second resistive layer (250-3 000Ω·m). The heat source appears to be bounded within the middle of exploration area and shows the N-S trend. Its depth ranges from more than 1.2 to less than 0.7 km, and its resistivity values range from 20 to 250 Ω·m in the northeast part of Jiangxia. Comparing the results of MT and CSAMT method, the positive anomalies are similar and can be assumed to be generated by the same source.