期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Application of Method of Fundamental Solutions in Solving Potential Flow Problems for Ship Motion Prediction 被引量:1
1
作者 封培元 马宁 顾解忡 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第2期153-158,共6页
A novel panel-free approach based on the method of fundamental solutions (MFS) is proposed to solve the potential flow for predicting ship motion responses in the frequency domain according to strip theory. Compared w... A novel panel-free approach based on the method of fundamental solutions (MFS) is proposed to solve the potential flow for predicting ship motion responses in the frequency domain according to strip theory. Compared with the conventional boundary element method (BEM), MFS is a desingularized, panel-free and integration-free approach. As a result, it is mathematically simple and easy for programming. The velocity potential is described by radial basis function (RBF) approximations and any degree of continuity of the velocity potential gradient can be obtained. Desingularization is achieved through collating singularities on a pseudo boundary outside the real fluid domain. Practical implementation and numerical characteristics of the MFS for solving the potential flow problem concerning ship hydrodynamics are elaborated through the computation of a 2D rectangular section. Then, the current method is further integrated with frequency domain strip theory to predict the heave and pitch responses of a containership and a very large crude carrier (VLCC) in regular head waves. The results of both ships agree well with the 3D frequency domain panel method and experimental data. Thus, the correctness and usefulness of the proposed approach are proved. We hope that this paper will serve as a motivation for other researchers to apply the MFS to various challenging problems in the field of ship hydrodynamics. 展开更多
关键词 method of fundamental solutions (mfs) panel-free strip theory ship hydrodynamics
原文传递
Mathematical modeling and numerical computation of the effective interfacial conditions for Stokes flow on an arbitrarily rough solid surface
2
作者 A.T.TRAN H.LE QUANG +1 位作者 Q.C.HE D.H.NGUYEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第5期721-746,共26页
The present work is concerned with a two-dimensional(2D)Stokes flow through a channel bounded by two parallel solid walls.The distance between the walls may be arbitrary,and the surface of one of the walls can be arbi... The present work is concerned with a two-dimensional(2D)Stokes flow through a channel bounded by two parallel solid walls.The distance between the walls may be arbitrary,and the surface of one of the walls can be arbitrarily rough.The main objective of this work consists in homogenizing the heterogeneous interface between the rough wall and fluid so as to obtain an equivalent smooth slippery fluid/solid interface characterized by an effective slip length.To solve the corresponding problem,two efficient numerical approaches are elaborated on the basis of the method of fundamental solution(MFS)and the boundary element methods(BEMs).They are applied to different cases where the fluid/solid interface is periodically or randomly rough.The results obtained by the proposed two methods are compared with those given by the finite element method and some relevant ones reported in the literature.This comparison shows that the two proposed methods are particularly efficient and accurate. 展开更多
关键词 effective slip length method of fundamental solution(mfs) boundary element method(BEM) Stokeslet MICRO-CHANNEL fluid/solid interface
在线阅读 下载PDF
A Meshless Regularization Method for a Two-Dimensional Two-Phase Linear Inverse Stefan Problem 被引量:1
3
作者 B.Tomas Johansson Daniel Lesnic Thomas Reeve 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第6期825-845,共21页
In this paper,a meshless regularization method of fundamental solutions is proposed for a two-dimensional,two-phase linear inverse Stefan problem.The numerical implementation and analysis are challenging since one nee... In this paper,a meshless regularization method of fundamental solutions is proposed for a two-dimensional,two-phase linear inverse Stefan problem.The numerical implementation and analysis are challenging since one needs to handle composite materials in higher dimensions.Furthermore,the inverse Stefan problem is ill-posed since small errors in the input data cause large errors in the desired output solution.Therefore,regularization is necessary in order to obtain a stable solution.Numerical results for several benchmark test examples are presented and discussed. 展开更多
关键词 Heat conduction method of fundamental solutions(mfs) inverse Stefan problem two-phase change
在线阅读 下载PDF
The Method of Fundamental Solution for a Radially Symmetric Heat Conduction Problem with Variable Coefficient
4
作者 MA Rui XIONG Xiangtuan AMIN Mohammed Elmustafa 《Journal of Partial Differential Equations》 CSCD 2021年第3期258-267,共10页
We consider an inverse heat conduction problem with variable coefficient on an annulus domain.In many practice applications,we cannot know the initial temperature during heat process,therefore we consider a non-charac... We consider an inverse heat conduction problem with variable coefficient on an annulus domain.In many practice applications,we cannot know the initial temperature during heat process,therefore we consider a non-characteristic Cauchy problem for the heat equation.The method of fundamental solutions is applied to solve this problem.Due to ill-posedness of this problem,we first discretize the problem and then regularize it in the form of discrete equation.Numerical tests are conducted for showing the effectiveness of the proposed method. 展开更多
关键词 Inverse heat conduction problem method of fundamental solutions(mfs) Cauchy problem Ill-posed problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部