期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
The effect of stress state and He concentration on the dislocation loop evolution in Ni superalloy irradiated by Ni^(+)&He^(+)dual-beam ions:In-situ TEM observation and MD simulations
1
作者 Zhenbo Zhu Rongyang Qiu +3 位作者 Litao Chang Guangcai Ma Huiqiu Deng Hefei Huang 《Journal of Materials Science & Technology》 2025年第9期77-88,共12页
In-situ TEM observation was conducted during Ni^(+)&He^(+)dual-beam irradiation to monitor the evolution of dislocation loops accompanied by He bubbles in the Ni-based alloy GH3535.Two distinct evolutions of dislo... In-situ TEM observation was conducted during Ni^(+)&He^(+)dual-beam irradiation to monitor the evolution of dislocation loops accompanied by He bubbles in the Ni-based alloy GH3535.Two distinct evolutions of dislocation loops,driven by residual stresses,were observed within the monitored grains.Hence,molec-ular dynamics(MD)simulations were employed to reveal the effects of stress magnitude and direction on loop evolution,including size,number density,type and variation.The simulations revealed that the presence of compressive stress reduced the formation energy of perfect dislocation loops,thus promoting their formation.Stress state was found to influence the preferential orientation of the loops,and com-pressive stress resulted in a decreased number density of dislocation loops but an increase in their size.This establishes a clear relationship between stress state and magnitude and the evolution of dislocation loops during ion beam irradiation.Additionally,the nature and characteristics of dislocation loops were quantified to explore the effects of He concentrations on their evolution.The higher He concentration not only promotes the nucleation of dislocation loops,leading to their higher number density,but also facil-itates the unfaulting evolution by increasing the stacking fault energy(SFE).Moreover,the accumulation of He in the lower-He-concentration sample led to the growth of dislocation loops in multiple stages,explaining their nearly identical average sizes when compared to the higher-He-concentration sample. 展开更多
关键词 Nickel-based superalloy Dual-beam ion irradiation Helium bubbles Dislocation loops In-situ characterization md simulation
原文传递
Effects of Fatty Acids on Low-Sulfur Diesel Lubricity:Experimental Investigation, DFT Calculation and MD Simulation 被引量:6
2
作者 Luo Hui Fan Weiyu +2 位作者 Li Yang Zhao Pinhui Nan Guozhi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第2期74-81,共8页
The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re- sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to lo... The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re- sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to low-sulfur diesel fuel. It was attempted to correlate the molecular structures of fatty acids, such as carbon chain length, degree of saturation and hy- droxylation, to their lubricity enhancement, which was evaluated by the High-Frequency Reciprocating Rig (HFRR) meth- od. The efficiency order was supported by the density functional theory (DFT) calculations and the molecular dynamics (MD) simulations. The lubricity enhancing properties of fatty acids are mainly determined by the cohesive energy of adsorbed films furmed on iron surface. The greater the cohesive energy, the more efficiently the fatty acid would enhance the lubricity of low-sulfur diesel fuel. 展开更多
关键词 LUBRICITY fatty acid DFT md simulation ADSORPTION
在线阅读 下载PDF
Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation
3
作者 Jinqi Yang Xiaoxiang Hu +5 位作者 Yuanyuan Zhang Lingyu Zhao Chunlin Yue Yuan Cao Yangyang Zhang Zhenwen Zhao 《Chinese Chemical Letters》 2025年第5期354-359,共6页
The bioactive constituents found in natural products(NPs)are crucial in protein-ligand interactions and drug discovery.However,it is difficult to identify ligand molecules from complex NPs that specifically bind to ta... The bioactive constituents found in natural products(NPs)are crucial in protein-ligand interactions and drug discovery.However,it is difficult to identify ligand molecules from complex NPs that specifically bind to target protein,which often requires time-consuming and labor-intensive processes such as isolation and enrichment.To address this issue,in this study we developed a method that combines ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry(UHPLCESI-MS)with molecular dynamics(MD)simulation to identify and observe,rapidly and efficiently,the bioactive components in NPs that bind to specific protein target.In this method,a specific protein target was introduced online using a three-way valve to form a protein-ligand complex.The complex was then detected in real time using high-resolution MS to identify potential ligands.Based on our method,only 10 molecules from green tea(a representative natural product),including the commonly reported epigallocatechin gallate(EGCG)and epicatechin gallate(ECG),as well as the previously unreported eepicatechin(4β→8)-epigallocatechin 3-O-gallate(EC-EGCG)and eepiafzelechin 3-O-gallate-(4β→8)-epigallocatechin 3-O-gallate(EFG-EGCG),were screened out,which could form complexes with Aβ_(1-42)(a representative protein target),and could be potential ligands of Aβ_(1-42).Among of them,EC-EGCG demonstrated the highest binding free energy with Aβ_(1-42)(−68.54±3.82 kcal/mol).On the other side,even though the caffeine had the highest signal among green tea extracts,it was not observed to form a complex with Aβ_(1-42).Compared to other methods such as affinity selection mass spectrometry(ASMS)and native MS,our method is easy to operate and interpret the data.Undoubtedly,it provides a new methodology for potential drug discovery in NPs,and will accelerate the research on screening ligands for specific proteins from complex NPs. 展开更多
关键词 Natural products(NPS) Ligands screening Mass spectrum(MS) Molecular dynamic simulation(mdS) Post-column modification Amyloidβ-peptide 42(A_(β1-42)) Green tea
原文传递
MD Simulation of Structural and Mechanical Transformation of Single-Walled Carbon Nanotubes Under Pressure 被引量:1
4
作者 Ji Zang Oswaldo Aldas-Palacios Feng Liu 《Communications in Computational Physics》 SCIE 2007年第3期451-465,共15页
We investigate the structural and mechanical properties of single-walled carbon nanotubes(SWNTs)under hydrostatic pressure,using constant-pressure molecular dynamics(MD)simulations.We observed that all the SWNTs,indep... We investigate the structural and mechanical properties of single-walled carbon nanotubes(SWNTs)under hydrostatic pressure,using constant-pressure molecular dynamics(MD)simulations.We observed that all the SWNTs,independent of their size and chirality,behave like a classical elastic ring exhibiting a buckling transition transforming their cross-sectional shape from a circle to an ellipse.The simulated critical transition pressure agrees well with the prediction from continuum mechanics theory,even for the smallest SWNT with a radius of 0.4nm.Accompanying the buckling shape transition,there is a mechanical hardness transition,upon which the radial moduli of the SWNTs decrease by two orders of magnitude.Further increase of pressure will eventually lead to a second transition from an elliptical to a peanut shape.The ratio of the second shape transition pressure over the first one is found to be very close to a constant of∼1.2,independent of the tube size and chirality. 展开更多
关键词 Carbon nanotube high-pressure solid-state phase transformation md simulation.
原文传递
Interaction specific binding hotspots in Endonuclease colicin-immunity protein complex from MD simulations
5
作者 YAO XueXia JI ChangGe +1 位作者 XIE DaiQian ZHANG John Z.H. 《Science China Chemistry》 SCIE EI CAS 2013年第8期1143-1151,共9页
The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.I... The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.In the current work,MD simulations of the WT and three hotspot mutants (D51A,Y54A and Y55A of Im9) of the E9-Im9 complexes were carried out to investigate specific interaction mechanisms of these three hotspot residues.The changes of binding energy between the WT and mutants of the complex were computed by the MM/PBSA method using a polarized force field and were in excellent agreement with experiment values,verifying that these three residues were indeed hotspots of the binding complex.Energy decomposition analysis revealed that binding by D51 to E9 was dominated by electrostatic interaction due to the presence of the carboxyl group of Asp51 which hydrogen bonds to K89.For binding by hotspots Y54 and Y55,van der Waals interaction from the aromatic side chain of tyrosine provided the dominant interaction.For comparison,calculation by using the standard (nonpolarizable) AMBER99SB force field produced binding energy changes from these mutations in opposite direction to the experimental observation.Dynamic hydrogen bond analysis showed that conformations sampled from MD simulation in the standard AMBER force field were distorted from the native state and they disrupted the inter-protein hydrogen bond network of the protein-protein complex.The current work further demonstrated that electrostatic polarization plays a critical role in modulating protein-protein binding. 展开更多
关键词 protein-protein interaction binding hotspot mutation Endonuclease Colicin immunity protein md simulation
暂未订购
Effects of Fe solid solute on grain boundaries of bi-crystal Cu: A molecular dynamics simulation
6
作者 Shuohan Yang Hongwei Bao +3 位作者 Huizhong Bai Yan Li Haodong Xu Fei Ma 《Nano Materials Science》 EI CAS CSCD 2024年第1期86-95,共10页
Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the... Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the formation energy,excess volume,dislocations and melting behaviors of GBs in CuFe alloys.It is illustrated that Fe solute affects the structural stability of Cu GBs substantially,the formation energy of GBs is reduced,but the thickness and melting point of GBs are increased,that is,the structural stability of Cu GBs is significantly improved owing to the Fe solutes.A strong scaling law exists between the formation energy,excess volume,thickness and melting point of GBs.Therefore,Fe solid solute plays an important role in the characteristics of GBs in bi-crystal Cu. 展开更多
关键词 CuFe alloy Grain boundary Structural stability md simulations
在线阅读 下载PDF
Metastable hybridized structure transformation in amorphous carbon films during friction-A study combining experiments and MD simulation 被引量:1
7
作者 Yefei ZHOU Zhihao CHEN +4 位作者 Tao ZHANG Silong ZHANG Xiaolei XING Qingxiang YANG Dongyang LI 《Friction》 SCIE EI CAS CSCD 2023年第9期1708-1723,共16页
Amorphous carbon films have attracted substantial interest due to their exceptional mechanical and tribological properties.Previous studies revealed that the amorphous carbon films exhibited lower coefficient of frict... Amorphous carbon films have attracted substantial interest due to their exceptional mechanical and tribological properties.Previous studies revealed that the amorphous carbon films exhibited lower coefficient of friction(COF)because of the transformation in bond structure from sp^(3)-C to sp^(2)-C during friction processes.However,the mechanism for such a transformation during friction is not well understood.This study is conducted to get an insight into the metastable transformation in amorphous carbon film during friction by means of experiments and molecular dynamics(MD)simulation.Relevant wear tests showed that wear of the film changed from an abrasive wear mode to a mixture of abrasion and adhesive wear,resulting in a decrease in growth rate of the wear rate after the running-in stage.It is worth noting that the sp^(3)-C atoms were increased during the running-in stage when the films contained lower sp^(3)/sp^(2) ratios.However,the formed sp^(3)-C atoms could only be short-lived and gradually transformed to sp^(2)-C atoms with the graphitization generated on the wearing surface of the films.The radial distribution function and translational order parameter indicated that the films'high sp^(3)/sp^(2) ratio led to an increased sp^(2)-C proportion on the wear scar after friction,which caused an increased structural ordering. 展开更多
关键词 amorphous carbon film metastable transformation structural order molecular dynamics(md)simulation tribological performance
原文传递
Studies on the Molecular Mechanism between HDAC8 and Inhibitory in Different Bioactivities by Molecular Docking and MD Simulations
8
作者 LIANG Zhen YAN Wen-Li +2 位作者 LI Hong-Mei LI Ying ZHANG Rong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2021年第10期1298-1308,共11页
HDAC8 is an important target for the treatment of many cancers and other diseases. To develop potent and selective HDAC8 inhibitors, molecular docking and molecular dynamics(MD) simulations were employed for investiga... HDAC8 is an important target for the treatment of many cancers and other diseases. To develop potent and selective HDAC8 inhibitors, molecular docking and molecular dynamics(MD) simulations were employed for investigation of the mechanism of HDAC8 inhibitions containing hydroxamic acid group. Compound 1 with high activity and compound 2 with low activity were selected for comparative study. Compound 1 formed a stronger chelation with Zn ion and was more stable in the HDAC8 pocket than compound 2. Residues HIS-180, ASP-178, ASP-267, and GLY-140 played a critical role in securing the position of compound 1. Both the head and tail of compound 1 formed strong hydrogen bonds with ASP-178, facilitating the ZBG of compound 1 close to the Zn ion so that they formed permanent chelation during the simulation period. The Cap group of the compounds with branch and long chains was advantageous to form interaction with active pocket opening. What’s more, based on the results of this study, three innovative recommendations for the design of highly active HDAC8 inhibitors were presented, which will be useful for the development of new HDAC8 inhibitors. 展开更多
关键词 HDAC8 inhibitors molecular docking molecular dynamics(md)simulations inhibition mechanism
原文传递
Molecular dynamics simulation study of nitrogen vacancy color centers prepared by carbon ion implantation into diamond
9
作者 Wei Zhao Zongwei Xu +1 位作者 Pengfei Wang Hanyi Chen 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期71-78,共8页
Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition... Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods. 展开更多
关键词 NV color center Ion implantation Molecular dynamics(md)simulation Yield enhancement
在线阅读 下载PDF
Unveiling the Formation and Electrochemical Properties of Nano-Clusters in Lithium Battery Electrolyte Induced by Nitrate Ion
10
作者 Jingwei Zhang Jia Li +3 位作者 Yawen Li Kun Li Weiwei Xie Qing Zhao 《Energy & Environmental Materials》 2025年第4期116-123,共8页
LiNO_(3) is known to significantly enhance the reversibility of lithium metal batteries;however,the modification of solvation structures in various solvents and its further impact on the interface have not been fully ... LiNO_(3) is known to significantly enhance the reversibility of lithium metal batteries;however,the modification of solvation structures in various solvents and its further impact on the interface have not been fully revealed.Herein,we systematically studied the evolution of solvation structures with increasing LiNO_(3) concentration in both carbonate and ether electrolytes.The results from molecular dynamics simulations unveil that the Li^(+)solvation structure is less affected in carbonate electrolytes,while in ether electrolytes,there is a significant decrease of solvent molecules in Li^(+)coordination,and a larger average size of Li^(+)solvation structure emerges as LiNO_(3) concentration increases.Notably,the formation of large ion aggregates with size of several nanometers(nano-clusters),is observed in ether-based electrolytes at conventional Li^(+)concentration(1 M)with higher NO_(3)^(-) ratio,which is further proved by infrared spectroscopy and small-angle X-ray scattering experiments.The nano-clusters with abundant anions are endowed with a narrow energy gap of molecular orbitals,contributing to the formation of an inorganic rich electrode/electrolyte interphase that enhances the reversibility of lithium stripping/plating with Coulombic efficiency up to 99.71%.The discovery of nano-clusters elucidates the underlying mechanism linking ions/solvent aggregation states of electrolytes to interfacial stability in advanced battery systems. 展开更多
关键词 CLUSTERS electrolytes lithium-metal batteries md simulations solvation structures
在线阅读 下载PDF
EvoNB: A protein language model-based workflow for nanobody mutation prediction and optimization
11
作者 Danyang Xiong Yongfan Ming +7 位作者 Yuting Li Shuhan Li Kexin Chen Jinfeng Liu Lili Duan Honglin Li Min Li Xiao He 《Journal of Pharmaceutical Analysis》 2025年第6期1334-1343,共10页
The identification and optimization of mutations in nanobodies are crucial for enhancing their thera-peutic potential in disease prevention and control.However,this process is often complex and time-consuming,which li... The identification and optimization of mutations in nanobodies are crucial for enhancing their thera-peutic potential in disease prevention and control.However,this process is often complex and time-consuming,which limit its widespread application in practice.In this study,we developed a work-flow,named Evolutionary-Nanobody(EvoNB),to predict key mutation sites of nanobodies by combining protein language models(PLMs)and molecular dynamic(MD)simulations.By fine-tuning the ESM2 model on a large-scale nanobody dataset,the ability of EvoNB to capture specific sequence features of nanobodies was significantly enhanced.The fine-tuned EvoNB model demonstrated higher predictive accuracy in the conserved framework and highly variable complementarity-determining regions of nanobodies.Additionally,we selected four widely representative nanobodyeantigen complexes to verify the predicted effects of mutations.MD simulations analyzed the energy changes caused by these mu-tations to predict their impact on binding affinity to the targets.The results showed that multiple mu-tations screened by EvoNB significantly enhanced the binding affinity between nanobody and its target,further validating the potential of this workflow for designing and optimizing nanobody mutations.Additionally,sequence-based predictions are generally less dependent on structural absence,allowing them to be more easily integrated with tools for structural predictions,such as AlphaFold 3.Through mutation prediction and systematic analysis of key sites,we can quickly predict the most promising variants for experimental validation without relying on traditional evolutionary or selection processes.The EvoNB workflow provides an effective tool for the rapid optimization of nanobodies and facilitates the application of PLMs in the biomedical field. 展开更多
关键词 NANOBODY Protein language models(PLMs) ESM2 model Evolutionary-nanobody(EvoNB) md simulations AlphaFold 3
在线阅读 下载PDF
Study of sodium lignosulfonate prepare low-rank coal-water slurry:Experiments and simulations 被引量:4
12
作者 Lin Li Chuandong Ma +5 位作者 Mengyu Lin Mingpu Liu Hao Yu QingbiaoWang Xiaoqiang Cao Xiaofang You 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期344-353,共10页
The effect of sodium lignosulfonate(SL)as additive on the preparation of low-rank coal-water slurry(LCWS)was studied by experiments and molecular dynamics(MD)simulation s.The experimental results show that the appropr... The effect of sodium lignosulfonate(SL)as additive on the preparation of low-rank coal-water slurry(LCWS)was studied by experiments and molecular dynamics(MD)simulation s.The experimental results show that the appropriate amount of additives is beneficial to reduce the viscosity of LCWS and increase the slurry concentration.Adsorption isotherm studies showed that SL conforms to single-layer adsorption on the coal surface,andΔG_(ads)^(0) was negative,proving that the reaction was spontaneous.Zeta potential measurements showed that SL increased the negative charge on coal.FTIR scanning and XPS wide-range scanning were performed on the coal before and after adsorption,and it was found that the content of oxygen functional groups on coal increased after adsorption.Simulation results show that when a large number of SL molecules exist in the solution,some SL molecules will bind to hydrophobic hydrocarbon groups on coal.The rest of the SL molecule s,their hydrophobic alkyl tails,come into contact with each other and aggregate in solution.The agglomeration of SL molecules and the surface of coal with static electricity will also produce electrostatic interaction,which is conducive to the even dispersion of coal particles.The results of mean square displacement(MSD)and self-diffusion coefficient(D)show that the addition of SL reduces the diffusion rate of water molecules.Simulation results correspond to experimental results,indicating that MD simulation is accurate and feasible. 展开更多
关键词 LCWS Low-rank coal Sodium lignosulfonate md simulation
在线阅读 下载PDF
Experimental and Molecular Dynamics Simulations for Investigating the Effect of FattyAcid and Its Derivatives on Low Sulfur Diesel Lubricity 被引量:4
13
作者 Luo Hui Fan Weiyu +2 位作者 Li Yang Zhao Pinhui Nan Guozhi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第3期79-85,共7页
In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricati... In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricating performance of the additives increased in the following order:stearic acid>glycol monopalmitate>stearyl alcohol>ethyl palmitate>cetyl ethyl ether.The adsorption behavior of the additives on Fe(110)surface and Fe2O3(001)surface was investigated by molecular dynamics(MD)simulations to verify their lubricity performance.The results suggested that adsorption energies of the additives on Fe(110)surface are determined by the van der Waals forces,while adsorptions on Fe2O3(001)surface are significantly attributed to the electrostatic attractive forces.Higher values of adsorption energy of the additives on Fe2O3(001)surface indicate that the additive has more efficient lubricity enhancing properties. 展开更多
关键词 md simulation ADSORPTION lubricity additive fatty acid low-sulfur diesel
在线阅读 下载PDF
Atomistic simulations of the surface severe plastic deformation-induced grain refinement in polycrystalline magnesium:The effect of processing parameters 被引量:3
14
作者 Xiaoye Zhou Hui Fu +1 位作者 Ji-Hua Zhu Xu-Sheng Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1242-1255,共14页
Magnesium(Mg)based alloys are promising candidates for many applications,but their untreated surfaces usually have low strength and hardness.In this study,a single point diamond turning(SPDT)technique was applied to r... Magnesium(Mg)based alloys are promising candidates for many applications,but their untreated surfaces usually have low strength and hardness.In this study,a single point diamond turning(SPDT)technique was applied to refine the grain size and improve the mechanical properties of the surface layers of Mg-Li alloys.By refining grains in the topmost layer to the nanometer scale(~60 nm),the surface hardness was found to be enhanced by approximately 60%.The atomic plastic deformation process during the SPDT was then studied by the real-time atomistic molecular dynamics(MD)simulations.A series of MD simulations with different combinations of parameters,including rake angle,cutting speed and cutting depth,were conducted to understand their influences on the microstructural evolution and associated plastic deformation mechanisms on the surface layer of the workpieces.The MD simulation results suggest that using increased rake angle,cutting speed and cutting depth can help to achieve better grain refinement.These simulation results,which provide atomic-level details of the deformation mechanism,can assist the parameter design for the SPDT techniques to achieve the high-performance heterogeneous nanostructured materials. 展开更多
关键词 Mg alloy Grain refinement Surface severe plastic deformation md simulations
在线阅读 下载PDF
Mechanism analysis and simulation of methyl methacrylate production coupled chemical looping gasification system 被引量:1
15
作者 Wende Tian Haoran Zhang +1 位作者 Zhe Cui Xiude Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期184-196,共13页
Nowadays,the efficient and cleaner utilization of coal have attracted wide attention due to the rich coal and rare oil/gas resources structure in China.Coal chemical looping gasification(CCLG)is a promising coal utili... Nowadays,the efficient and cleaner utilization of coal have attracted wide attention due to the rich coal and rare oil/gas resources structure in China.Coal chemical looping gasification(CCLG)is a promising coal utilization technology to achieve energy conservation and emission reduction targets for highly pure synthesis gas.As a downstream product of synthesis gas,methyl methacrylate(MMA),is widely used as raw material for synthesizing polymethyl methacrylate and resin products with excellent properties.So this paper proposes a novel system integrating MMA production and CCLG(CCLG-MMA)processes aiming at"energy saving and low emission",in which the synthesis gas produced by CCLG and purified by dry methane reforming(DMR)reaction and Rectisol process reacts with ethylene for synthesizing MMA.Firstly,the reaction mechanism of CCLG is investigated by using Reactive force field(ReaxFF)MD simulation based on atomic models of char and oxygen carrier(Fe_(2)O_(3))for obtaining optimum reaction temperature of fuel reactor(FR).Secondly,the steady-state simulation of CCLG-MMA system is carried out to verify the feasibility of MMA production.The amount of CO_(2)emitted by CCLG process and DMR reaction is 0.0028(kg CO_(2))^(-1)·(kg MMA)^(-1).The total energy consumption of the CCLG-MMA system is 45521 kJ·(kg MMA)^(-1),among which the consumption of MMA production part is 25293 k(·kg MMA)^(-1).The results show that the CCLG-MMA system meets CO_(2)emission standard and has lower energy consumption compared to conventional MMA production process.Finally,one control scheme is designed to verify the stability of CCLG-MMA system.The CCLG-MMA integration strategy aims to obtain highly pure MMA from multi-scale simulation perspectives,so this is an optimal design regarding all factors influencing cleaner MMA production. 展开更多
关键词 ReaxFF md simulation CCLG-MMA system simulation Sensitivity analysis Plant wide control
在线阅读 下载PDF
Simulation on Grain Boundary Sliding during Superplastic Deformation Using Molecular Dynamics Method
16
作者 JitaiNIU LihongHAN ChonghaoWOO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期177-179,共3页
Grain growth and grain boundary sliding are the two main superplastic deformation mechanisms. In the paper, simulation work is focused on the sliding of a S3 (111) symmetric twist coincidence grain boundary, a S13 (11... Grain growth and grain boundary sliding are the two main superplastic deformation mechanisms. In the paper, simulation work is focused on the sliding of a S3 (111) symmetric twist coincidence grain boundary, a S13 (110) asymmetric tilt coincidence grain boundary, and a S3 (110) symmetric tilt coincidence grain boundary in Al, and the energies of grain boundary for each of equilibrium configurations are computed. An embedded atom method (EAM) potential was used to simulate the atomic interactions in a bicrystal containing more than 2000 atoms. At 0 K, the relationships between total potential energy and time steps for S3 (111) symmetric twist coincidence grain boundary and S3 (110) symmetric tilt coincidence grain boundary during sliding at 2 m/s represent the periodic characteristic. However, the relationship between total potential energy and time steps for S13 (110) asymmetric tilt coincidence grain boundary represents the damp surge characteristic. It is found that grain boundary sliding for S3 (110) symmetric tilt coincidence grain boundary is coupled with apparent grain boundary migration. 展开更多
关键词 ALUMINUM Grain boundary sliding Superplastic deformation md simulation
在线阅读 下载PDF
Molecular insight into the transport of multicomponent heavy metals in calcium silicate hydrate and its mechanical behavior
17
作者 Fusheng Zha Haodong Tai +3 位作者 Qiao Wang Bo Kang Long Xu Chengfu Chu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5135-5145,共11页
Heavy metal-contaminated sites are primarily treated via solidification and adsorption.Calcium silicate hydrate(C-S-H)is generated during the soil stabilization process and contributes significantly to the strength an... Heavy metal-contaminated sites are primarily treated via solidification and adsorption.Calcium silicate hydrate(C-S-H)is generated during the soil stabilization process and contributes significantly to the strength and durability of the stabilized soil.To understand how the soil moisture content and heavy metal concentration affect the transport of heavy metals and the tensile strength of C-S-H,this study performed molecular dynamics(MD)simulations under different moisture and concentration levels.The results showed that Pb2+presented the highest adsorption to the surface of C-S-H due to its strong electrostatic interaction energy.The adsorption density peaks of Pb2+were 1.5–5 times greater than those of Cd2+and Zn2+.Zn2+and Cd2+ions were more likely to be adsorbed onto water molecules and form a larger hydrated radius than Pb2+.The adsorption of heavy metals onto C-S-H initially increased as the metal concentration increased and then decreased because of the limited sorption sites on C-S-H.The diffusion coefficients of the multicomponent metals in C-S-H showed no consistent trends.The maximum tensile strength of C-S-H decreased with increasing soil moisture and heavy metal concentrations.The tensile stress increased approximately linearly with strain until it reached a peak,after which it gradually declined but remained above zero,indicating good ductility and toughness under unsaturated conditions.These findings offer valuable molecular insights into the interactions between C-S-H and heavy metals and soil moisture,thereby advancing our understanding of their combined effects on soil stabilization. 展开更多
关键词 Calcium silicate hydrate(C-S-H) Multicomponent heavy metal Molecular dynamics(md)simulation Adsorption Tensile strength
暂未订购
ERLNs augment simultaneous delivery of GFSV into PC-3 cells:Influence of drug combination on SDH,GPX-4,5α-RD,and cytotoxicity
18
作者 RIYAD F.ALZHRANI LAMA BINOBAID +6 位作者 ABDULAZIZ A.ALORAINI MESHAL S.ALSAHLI AHMED H.BAKHEIT HANADI H.ASIRI SABRY M.ATTIA ALI ALHOSHANI GAMALELDIN I.HARISA 《Oncology Research》 2025年第4期919-935,共17页
Objective:Prostate cancer(PCA)is the second most widespread cancer among men globally,with a rising mortality rate.Enzyme-responsive lipid nanoparticles(ERLNs)are promising vectors for the selective delivery of antica... Objective:Prostate cancer(PCA)is the second most widespread cancer among men globally,with a rising mortality rate.Enzyme-responsive lipid nanoparticles(ERLNs)are promising vectors for the selective delivery of anticancer agents to tumor cells.The goal of this study is to fabricate ERLNs for dual delivery of gefitinib(GF)and simvastatin(SV)to PCA cells.Methods:ERLNs loaded with GF and SV(ERLNGFSV)were assembled using bottomup and top-down techniques.Subsequently,these ERLN cargoes were coated with triacylglycerol,and phospholipids and capped with chitosan(CS).The ERLNGFSV,and CS engineered ERLNGFSV(CERLNGFSV)formulations were characterized for particle size(PS),zeta potential(ZP),and polydispersity index(PDI).The biocompatibility,and cytotoxicity of the plain and GF plus SV-loaded ERLN cargoes were assessed using erythrocytes and PC-3 cell line.Additionally,molecular docking simulations(MDS)were conducted to examine the influence of GF and SV on succinate dehydrogenase(SDH),glutathione peroxidase-4(GPX-4),and 5α-reductase(5α-RD).Results:These results showed that plain,ERLNGFSV,and CERLNGFSV cargoes have a nanoscale size and homogeneous appearance.Moreover,ERLNGFSV and CERLNGFSV were biocompatible,with no detrimental effects on erythrocytes.Treatment with GF,SV,GF plus SV,ERLNGFSV,and CERLNGFSV significantly reduced the viability of PC-3 cells compared to control cells.Particularly,the blend of GF and SV,as well as ERLNGFSV and CERLNGFSV augmented PC-3 cell death.Also,treating PC-3 cells with free drugs,their combination,ERLNGFSV,and CERLNGFSV formulations elevated the percentage of apoptotic cells.MDS studies demonstrated that GF and SV interact with the active sites of SDH,GPX-4,and 5α-reductase.Conclusions:This study concludes that SVGF combination and ERLNs loading induce particular delivery,and synergism on PC-3 death through action on multiple pathways involved in cell proliferation,and apoptosis,besides the interaction with SDH,GPX-4,and 5α-RD.Therefore,GFSV-loaded ERLN cargoes are a promising strategy for PCA treatment.In vivo studies are necessary to confirm these findings for clinical applications. 展开更多
关键词 Prostate cancer(PCA) Nanoparticle biocompatibility Molecular docking simulation(mdS) Apoptosis Drug repurposing
暂未订购
Solid−solid phase transition of tungsten induced by high pressure:A molecular dynamics simulation 被引量:5
19
作者 Xiao-zhen DENG Lin LANG +3 位作者 Yun-fei MO Ke-jun DONG Ze-an TIAN Wang-yu HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2980-2993,共14页
The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster a... The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster analysis(LSCA).It is found that under 40−100 GPa at a cooling rate of 0.1 K/ps a pure W melt first crystallizes into the body-centred cubic(BCC)crystal,and then transfers into the hexagonal close-packed(HCP)crystal through a series of BCC−HCP coexisting states.The dynamic factors may induce intermediate stages during the liquid−solid transition and the criss-cross grain boundaries cause lots of indistinguishable intermediate states,making the first-order BCC−HCP transition appear to be continuous.Furthermore,LSCA is shown to be a parameter-free method that can effectively analyze both ordered and disordered structures.Therefore,LSCA can detect more details about the evolution of the structure in such structure transition processes with rich intermediate structures. 展开更多
关键词 molecular dynamics(md)simulation rapid solidification solid−solid phase transition largest standard cluster analysis topologically close-packed cluster
在线阅读 下载PDF
Microstructural evolution and mechanical properties of FeCoCrNiCu high entropy alloys:a microstructure-based constitutive model and a molecular dynamics simulation study 被引量:4
20
作者 Gangjie LUO Li LI +6 位作者 Qihong FANG Jia LI Yuanyuan TIAN Yong LIU Bin LIU Jing PENG P.K.LIAW 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第8期1109-1122,共14页
High entropy alloys(HEAs)attract remarkable attention due to the excellent mechanical performance.However,the origins of their high strength and toughness compared with those of the traditional alloys are still hardly... High entropy alloys(HEAs)attract remarkable attention due to the excellent mechanical performance.However,the origins of their high strength and toughness compared with those of the traditional alloys are still hardly revealed.Here,using a microstructure-based constitutive model and molecular dynamics(MD)simulation,we investigate the unique mechanical behavior and microstructure evolution of FeCoCrNiCu HEAs during the indentation.Due to the interaction between the dislocation and solution,the high dislocation density in FeCoCrNiCu leads to strong work hardening.Plentiful slip systems are stimulated,leading to the good plasticity of FeCoCrNiCu.The plastic deformation of FeCoCrNiCu is basically affected by the motion of dislocation loops.The prismatic dislocation loops inside FeCoCrNiCu are formed by the dislocations with the Burgers vectors of a/6[112]and a/6[112],which interact with each other,and then emit along the<111>slip direction.In addition,the mechanical properties of FeCoCrNiCu HEA can be predicted by constructing the microstructure-based constitutive model,which is identified according to the evolution of the dislocation density and the stress-strain curve.Strong dislocation strengthening and remarkable lattice distortion strengthening occur in the deformation process of FeCoCrNiCu,and improve the strength.Therefore,the origins of high strength and high toughness in FeCoCrNiCu HEAs come from lattice distortion strengthening and the more activable slip systems compared with Cu.These results accelerate the discovery of HEAs with excellent mechanical properties,and provide a valuable reference for the industrial application of HEAs. 展开更多
关键词 molecular dynamics(md)simulation microstructure-based constitutive model high entropy alloy(HEA) deformation behavior
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部