Specially shaped permanent magnet structures can satisfy the requirements of equipment with limited space or unique shapes.Thereby,these optimize the distribution of magnetic fields.However,traditional manufacturing m...Specially shaped permanent magnet structures can satisfy the requirements of equipment with limited space or unique shapes.Thereby,these optimize the distribution of magnetic fields.However,traditional manufacturing methods are limited by the mold design and insufficient material utilization.In this study,a polymer-based Nd_(2)Fe_(14)B(NdFeB)magnetic slurry was developed based on direct ink writing(DIW)3D printing technology.A rapidly volatilizable magnetic slurry was used to achieve 3D oriented controllable layering,thus realizing the direct molding fabrication of NdFeB permanent magnets with complex structures.By exploring and optimizing the 3D printing process parameters,specially shaped bonded NdFeB permanent magnet structures with high precision and shape fidelity were prepared.The test results indicated that the remnant magnetization of the printed magnets was proportional to the NdFeB content in the slurry,the coercivity closely matched that of the original powder,and the mechanical properties of the printed magnets were favorable.Building on this,a magnetically driven helical-structure robot was designed and printed to achieve stable motion in low-Reynolds-number fluids.This paper presents a new,low-cost solution for the room-temperature preparation of shape-bonded NdFeB permanent magnets.展开更多
Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic(AFM) exchange coupling, which have recently aroused significant interest for potential ...Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic(AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, Bose–Einstein distribution populates magnon states across all energies from opposite eigenmodes, and hence the magnon spin current is largely compensated. Contrary to this common observation,here, we show that magnets with X-type AFM stacking, where opposite magnetic sublattices form orthogonal intersecting chains, support giant magnon spin currents with minimal compensation. Our model Hamiltonian calculations predict magnetic chain locking of magnon spin currents in these X-type magnets, significantly reducing their compensation ratio. In addition, the one-dimensional nature of the chain-like magnetic sublattices enhances magnon spin conductivities surpassing those of two-dimensional ferromagnets and canonical altermagnets. Notably, uncompensated X-type magnets, such as odd-layer antiferromagnets and ferrimagnets, can exhibit magnon spin currents polarized opposite to those expected by their net magnetization. These unprecedented properties of X-type magnets, combined with their inherent advantages resulting from AFM coupling, offer a promising new path for low-power high-performance spintronics.展开更多
Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepa...Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepared by combining the single/dual/multi-main-phase processes with the Dy-containing grain boundary diffusion process(GBDP).The effects of base magnets with different Ce distributions on GBDP were systematically investigated.Magnetic properties and micro structure analysis reveal that high-performance multi-main-phase(MMP)diffused magnets with remanence(Br)up to 12.52 kGs,coercivity up to 16.08 kOe,and maximum magnetic energy product up to 36.44 MGOe are obtained,which is attributed to the regulation of Ce by the MMP process,and the optimization of microstructure by Gd-Cu alloy.Meanwhile,the diffusion efficiency is significantly improved because of Ce being restricted to the grain core,which promotes the formation of a continuous structure at the grain boundaries,and the formation of a continuous multilayer shell grain structure with high anisotropy field,while the Br of the diffused magnet is maintained.Besides,magnetic domain analysis shows that the MMP diffused magnet effectively suppresses the nucleation of demagnetized domains and enhances the pinning effect of domain walls.The study establishes an experimental foundation for the development of sintered high Ce-content magnets showcasing superior performance.展开更多
Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properti...Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properties of the diffusion matrix.Through the adjustment of the sintering process,we effectively prepared magnets with varied densities that serve as the matrix for grain boundary diffusion with TbH,diffusion.The mobility characteristics of the Nd-rich phase during the densification stage are leveraged to ensure a more extensive distribution of heavy rare earth elements within the magnets.According to the experimental results,the increase in coercivity of low-density magnets after diffusion is significantly greater than that of relatively high-density magnets.The coercivity values measured are 805.32 kA/m for low-density magnets and 470.3 kA/m for high-density magnets.Additionally,grain boundary diffusion notably enhances the density of initial low-density magnets,addressing the issue of low density during the sintering stage.Before the diffusion treatment,the Nd-rich phases primarily concentrate at the triangular grain boundaries,resulting in an increased number of cavity defects in the magnets.These cavity defects contain atoms in a higher energy state,making them more prone to transition.Consequently,the diffusion activation energy at the void defects is lower than the intracrystalline diffusion activation energy,accelerating atom diffusion.The presence of larger cavities also provides more space for atom migration,thereby promoting the diffusion process.After the diffusion treatment,the proportion of bulk Nd-rich phases significantly decreases,and they infiltrate between the grains to fill the cavity defects,forming continuous fine grain boundaries.Based on these observations,the study aims to explore how to utilize this information to develop an efficient technique for grain boundary diffusion.展开更多
Three types of NdFeB magnets with the same composition and different grain sizes were prepared,and then the grain boundary diffusion was conducted using metal Tb under the same technical parameters.The effect of grain...Three types of NdFeB magnets with the same composition and different grain sizes were prepared,and then the grain boundary diffusion was conducted using metal Tb under the same technical parameters.The effect of grain size on the grain boundary diffusion process and properties of sintered NdFeB magnets was investigated.The diffusion process was assessed using X-ray diffractometer,field emission scanning electron microscope,and electron probe microanalyzer.The magnetic properties of the magnet before and after diffusion were investigated.The results show that the grain refinement of the magnet leads to higher Tb utilization efficiency and results in higher coercivity at different temperatures.It can be attributed to the formation of a deeper and more complete core-shell structure,resulting in better magnetic isolation and higher anisotropy of the Nd_(2)Fe_(14)B grains.This work may shed light on developing high coercivity with low heavy rare earth elements through grain refinement.展开更多
Due to the ionic feature of the lanthanide ions,to straightly bridge two lanthanide(Ln)ions is rather challenging though this bridging mode is much beneficial to suppress the zero-field quantum tunneling of the magnet...Due to the ionic feature of the lanthanide ions,to straightly bridge two lanthanide(Ln)ions is rather challenging though this bridging mode is much beneficial to suppress the zero-field quantum tunneling of the magnetization(QTM)for single-molecule magnets(SMMs),a kind of nanosized magnetic materials for high-density information storage and magnetic resonance imaging contrast agent.Here we used an unusual terminal amino pyridine ligand which utilizes extensive supramolecular interactions to stabilize such an unusual linear bridging mode and obtained a series of such dimeric Ln(Ⅲ)complexes-{[LnL_(A)(4-NH_(2)py)_(5)]_(2)(μ-Cl)}[BPh_(4)]_(3)(For L_(A)^(-)=1-AdO^(-),1Ln;for L_(A)^(-)=~tBuO^(-),2Ln;Ln=Dy,Gd).More uniquely,the bridging chloride sits in the center of two improper rotation symmetry related Ln(Ⅲ)ions with local C_(5v)symmetry.The dimeric compounds 1Dy and 2Dy exhibit much slower low-temperature magnetic relaxation and thousands of times longer relaxation times at 2 K(τ_(2K)=2706.89 and 1437.05 s for 1Dy and 2Dy)compared to the diluted ones with the approaching magnetic property of the C_(5v)motifs(τ_(2K)=0.77 and 1.29 s for 1Dy@1Y and 2Dy@2Y).Though magnetic interactions mediated via the chloride bridge in both 1Dy and 2Dy are weak and antiferromagnetic,it is still very effective due to such a linear geometry to reduce the QTM effect in SMMs.展开更多
Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,...Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,realizing such magnets remains a significant challenge.Recently,some studies have suggested honeycomb magnets A_(3)Ni_(2)XO_(6)(A=Li,Na;X=Bi,Sb)with a high spin S=1 could serve as potential candidates for realizing strong Kitaev interactions.In this work,we systematically investigate their magnetic properties,with a particular emphasis on their Kitaev interactions,using first-principles calculations and Monte Carlo simulations.Our results indicate that all A_(3)Ni_(2)XO_(6)compounds are zigzag antiferromagnets,and their magnetic moments almost tend to be out of plane.We find that their dominant magnetic interactions are the nearest-neighbor ferromagnetic and third-nearest-neighbor antiferromagnetic Heisenberg interactions,while their Kitaev interactions are extremely weak.By analyzing their electronic structures and the mechanism of generating their magnetic interactions,we reveal that either artificially tuning spin-orbit coupling or applying strain cannot produce sufficient spin-orbit entangled states to realize the intriguing Kitaev interactions.Our work advances the understanding of the magnetism in A_(3)Ni_(2)XO_(6)compounds and provides insights for further exploration of Kitaev physics in honeycomb magnets.展开更多
Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_...Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)alloys,which are obviously higher than that of Dy58Co42GBD-treated magnet with 16.64 kOe,Further thermal stability studies indicate that the thermal stability of Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treated magnets is further improved compared to the Dy58Co42GBD-treated magnet The results show that th e temperature coefficients of remanence(20-120℃)are reduced from-0.148%/℃to-0.134%/℃and-0.132%/℃by Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treatment,respectively.Besides,the irreversible magnetic flux losses(120℃)for Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)diffusion magnets are 4.76%and 2.79%,respectively.Microstructural analyses demonstrate that the presence of Cu and Al elements reduces the excessive accumulation of Dy and Co on the surface in the diffusion magnets an d improves the diffusion depth and utilization of Dy and Co.Furthermore,the flow of Co from the triple junction phase to the thin grain boundary phase is promoted,which contributes to the uniform distribution of Co.In addition,the dynamic evolution of the magnetic domain structure during the temperature rise process was studied.This work provides insight into the preparation of high-performance and high-thermal stability magnets.展开更多
The low coercivity is the major factor inhibiting the large-scale commercial utilization of Nd-Ce-Fe-B sintered magnets.In this work,we achieved a record-high coercivity of 15.04 kOe in Ga-doped Nd-Ce-Fe-B sintered ma...The low coercivity is the major factor inhibiting the large-scale commercial utilization of Nd-Ce-Fe-B sintered magnets.In this work,we achieved a record-high coercivity of 15.04 kOe in Ga-doped Nd-Ce-Fe-B sintered magnets with 30 wt%Ce replacing Nd,demonstrating enormous potential.The Ga-doped Nd-Ce-Fe-B magnets with higher boron(HB)and lower boron(LB)content are designed.The coercivity of the HB magnet increases slightly from 10.80 to 12.26 kOe after annealing,attributed to the optimized distribution of grain boundary(GB)phases.In contrast,the coercivity of the LB magnet remarkably increases from 8.13 to 15.04 kOe after annealing.Microstructural observations indicate that the narrow GB phase in the as-sintered magnet is rich in Fe,and the strong exchange coupling of adjacent grains resulted in low coercivity.The evolution of Ga-rich phases reveals a potential formation mechanism of the RE_(6)Fe_(13)Ga phase,that is the RE-Fe amorphous phase and REGa phase in the as-sintered magnet combine to form the RE_(6)Fe_(13)Ga phase and RE-Ga amorphous phase during post-sinter annealing(RE:rare earth).Moreover,the GB phase of the annealed magnet transforms into a Fe-lean phase with a thickness of 16.4 nm.Magnetization and demagnetization behavior characterizations reveal that the exchange decoupling of adjacent grains induced by the optimized GB phases is the main reason for the remarkable coercivity enhancement,which is also validated by micromagnetic simulations.展开更多
The enhancement of coercivity in Nd-Fe-B sintered magnets modified by Pr_(58)Dy_(10)Cu_(32)alloy was investigated through scanning electron microscope(SEM)and in-situ magneto-optic Kerr effect(MOKE)microscopy.The modi...The enhancement of coercivity in Nd-Fe-B sintered magnets modified by Pr_(58)Dy_(10)Cu_(32)alloy was investigated through scanning electron microscope(SEM)and in-situ magneto-optic Kerr effect(MOKE)microscopy.The modification treatment resulted in the formation of a smooth and continuous weakly magnetic grain boundary layer and the(Nd,Pr,Dy)_(2)Fe_(14)B main phase with a high magnetocrystalline anisotropy field,leading to an increased coercivity of 23 kOe.MOKE observations revealed that the dynamic evolution of the maze domain area under an external magnetic field varied significantly between the original and modified magnets.Compared with the original magnets,the modified magnets exhibited a slower decrease in maze domain area during magnetization and a slower increase during reverse magnetization,contributing to the observed coercivity enhancement.展开更多
By developing high comprehensive performance((BH)_(max)+H_(cj)),Nd-Fe-B magnets can operate stably in high-temperature applications,greatly expanding the application scenarios of them.Unfortunately,there is a constrai...By developing high comprehensive performance((BH)_(max)+H_(cj)),Nd-Fe-B magnets can operate stably in high-temperature applications,greatly expanding the application scenarios of them.Unfortunately,there is a constraint relationship between coercivity(H_(cj))and maximum magnetic energy product((BH)_(max)),and an increase in H_(cj) always accompanies a decrease in(BH)_(max).Here,the excellent comprehensive magnetic performance of up to 86.54,namely(BH)_(max) of 42.33 MGOe and H_(cj) of 44.21 kOe,is unprecedented in the sintered Nd-Fe-B magnets.This magnet is obtained by designing a unique grain structure through micrometallurgical reactions to prepare a matrix with excellent comprehensive performance,and then by stepwise diffusion,the(BH)_(max) and H_(cj) of the magnet are simultaneously enhanced.The magnet prepared in this way has a“double-shell core”structure and Tb segregation distribution inside the core.The working temperature of the magnet in this work reached 280℃,providing a new approach for the development of high-performance Nd-Fe-B magnets.展开更多
Previous studies have demonstrated that increasing Fe doping content can enhance the saturation magnetization and maximum energy product of 2:17-type Sm-Co rare-earth permanent magnets.Howeve r,syste matic theo retica...Previous studies have demonstrated that increasing Fe doping content can enhance the saturation magnetization and maximum energy product of 2:17-type Sm-Co rare-earth permanent magnets.Howeve r,syste matic theo retical calculations and the effects of other transition metal dopants have yet to be explored.This study employed first-principles computational methods to investigate the effects of doping with 3d and Zr transition metal elements on the structural stability,magnetic properties,and electronic structure of Sm_(2)Co_(17)permanent magnets.The results indicate that Sc and Zr tend to occupy the Sm-6c site,while Ni,Cu and Zn preferentially occupy the 18h site,and Ti,V,Cr,Mn and Fe primarily occupy the Co-6c site.Except for V and Cu,all other elements effectively improve the structural stability of the doped systems.Additionally,Mn and Fe doping can significantly enhance the total magnetic moment and magnetocrystalline anisotropy energies of the Sm_(2)Co_(17)system,while Cr only increases the total magnetic moment.More importantly,doping with Cr,Mn and Fe within the doping co ntent range of9.8 at%<x<35.29 at% can simultaneously improve the structural stability,total magnetic moment and magnetocrystalline anisotropy energy of the Sm_(2)Co_(17) system.Our study provides valuable theoretical guidance for experimental exploration and is expected to promote the development and application of novel rare-earth permanent magnetic materials.展开更多
In this work,the effect of the Al addition amount in the TbAl coatings on the grain boundary diffusion proces s(GBDP)of Tb were systematically explored.Direct current magnetron sputtering(DCMS)method was utilized in c...In this work,the effect of the Al addition amount in the TbAl coatings on the grain boundary diffusion proces s(GBDP)of Tb were systematically explored.Direct current magnetron sputtering(DCMS)method was utilized in co-sputtering manner to synthesize the TbAl coatings with certain Tb consumption and various Al addition amount.Results show that the moderate Al addition amount significantly improves the wettability of grain boundary(GB)phases,thereby acquiring more continuous and uniform Tb-rich shells and GB phases between matrix phases,as well as deeper diffusion depth and denser microstructure.The largest increase amplitude of intrinsic coercivity(Hcj)is improved by 78.4%in TbAIdiffused magnet compared to the pure Tb-diffused magnet,while the remanence(Br)is expected to show an overall decreasing tendency accompanied with a slight increase in the decreasing process.However,when the Al addition amount is excessive,magnetic dilution effect is enhanced,and the Tbrich shells and GB phases between matrix phases become fuzzy and even invisible,which in turn deteriorates the magnetic properties of diffused magnets.展开更多
The particles of different shapes,multi-walled carbon nanotubes(CNTs)and graphene nanosheets(GNs),were used to modulate the mechanical properties and anisotropy of the magnets.It is found that the rodshaped CNTs can i...The particles of different shapes,multi-walled carbon nanotubes(CNTs)and graphene nanosheets(GNs),were used to modulate the mechanical properties and anisotropy of the magnets.It is found that the rodshaped CNTs can increase the bending strength ratio of the c and a axes of the magnet from 1.114 to1.254,while flake-like GNs decrease it from 1.114 to 0.989.In-depth analysis indicates that the mechanical anisotropy of the magnet is greatly influenced by the distribution and thickness of the rare earth phase(RE phase),with the thicker RE phase demonstrating greater capability of blunting at the crack tip.Using the finite element method,it is found that the strength of brittle material can be enhanced by the additive particles owing to the inhibition of crack initiation and stress conduction,as well as the deflection of the crack.The flake-like GNs weaken the mechanical anisotropy of magnets by varying the distribution of RE phase and form a shell encompassing the main phase.Nonetheless,the alignment of CNTs occurring in the process of magnetic orientation process can significantly increase the mechanical anisotropy of the magnet.In particular,when loaded in the parallel c axis(c_(‖))direction,the cracks need to penetrate the main phase due to the strong frictional interlocking between CNTs and the main phase grains,in which case the bending strength will be significantly increased.By contrast,when loaded in the vertical c axis(c_(⊥))direction,the cracks can bypass the rod-like particles and change directions of propagation.As such,the increase in bending strength is smaller than that in loading along with the cll direction.展开更多
Using exact diagonalization of the Hamiltonian and transition matrix in the energy eigenbasis,we perform model calculations of the magnetic relaxation rate in single-molecule magnets.A careful examination of the trans...Using exact diagonalization of the Hamiltonian and transition matrix in the energy eigenbasis,we perform model calculations of the magnetic relaxation rate in single-molecule magnets.A careful examination of the transition matrix reveals that resonant tunneling does not enhance transitions between the nearly degenerate states;rather,it suppresses them.Instead,transitions from one state in the degenerate pair to neighboring states of the other are significantly enhanced.We conduct a detailed analysis of the transition rates to clearly demonstrate how resonant tunneling modulates these processes.This work provides a substantial reinterpretation of the resonant magnetic relaxation in single-molecule magnets and clearly identifies the dominant relaxation pathways.展开更多
We investigated the efficiency of charge-to-spin conversion in two-dimensional Rashba altermagnets,a class of materials that combines the characteristics of both ferromagnets and antiferromagnets.Using quantum linear ...We investigated the efficiency of charge-to-spin conversion in two-dimensional Rashba altermagnets,a class of materials that combines the characteristics of both ferromagnets and antiferromagnets.Using quantum linear response theory,we quantified the longitudinal and spin Hall conductivities in this system and demonstrated a substantial enhancement in the spin Hall angle below the band crossing point through the dual effects of relativistic spin–orbit interaction and nonrelativistic altermagnetic exchange interaction.Additionally,the results showed that the skew scattering and intrinsic mechanisms arising from Fermi sea states are almost negligible in this system,in contrast to conventional ferromagnetic Rashba systems.Our findings not only elucidate the spin dynamics in Rashba altermagnets but also pave the way for developing novel strategies for manipulating charge-to-spin conversion via sophisticated control of noncollinear and collinear out-of-plane spin textures.展开更多
If you are asked what requires you to win a lottery and costs RMB 168,it may not be a car license plate,but a fridge magnet.Collecting fridge magnets has quietly become a popular culture in recent years.Many young peo...If you are asked what requires you to win a lottery and costs RMB 168,it may not be a car license plate,but a fridge magnet.Collecting fridge magnets has quietly become a popular culture in recent years.Many young people have more demand for fridge magnets than for refrigerators.The empty refrigerator covered with fridge magnets has become a trend.People with no idea how to choose souvenirs regard the fridge magnets as the best gifts,allowing this seemingly inconspicuous small product to create a billion-yuan market.展开更多
Lanthanide-based single-molecule magnets exhibit broad magnetic hysteresis,which manifests as slow magnetic relaxation in strong magnetic fields.However,the origin of the nontrivial hysteresis behaviors remains debate...Lanthanide-based single-molecule magnets exhibit broad magnetic hysteresis,which manifests as slow magnetic relaxation in strong magnetic fields.However,the origin of the nontrivial hysteresis behaviors remains debated.Here,we propose two influential mechanisms:activation of optical-phonon-mediated direct transitions within the ground-state doublet and the resonant Raman process.These discoveries,coupled with the g-factor anisotropy,account for the observed hysteresis behaviors in the regimes of fast magnetic relaxation.Our findings complement the recognized mechanisms used to interpret the magnetic hysteresis of single-molecule magnets.展开更多
In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage...In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage of Al_(2)O_(3)doping is enough to enhance the flexural strength by about 20%(∼180 MPa for the case of the c-axis parallel to height).Meanwhile,the(BH)max remains around 219 kJ/m^(3),and Hcj is 2052 kA/m,which is over 95%of that of the original magnets without doping.The promising improvement in flexural strength is mainly attributed to the grain size effective refinement caused by Sm_(2)O_(3)particles including newly-formed ones from the reaction of the Al_(2)O_(3)powder and Sm in the matrix.Furthermore,the grain size of the magnets decreases significantly with increasing of Al_(2)O_(3)doping up to 0.3 wt%.Espe-cially,the grain size of 0.3 wt%Al_(2)O_(3)doped magnets is refined by 37%.However,the flexural strengths(for the c-axis parallel to height and the c-axis parallel to width cases)of the magnets decrease sequen-tially and are even lower than that of the original magnet.The microstructure investigations indicate that the decrease in flexural strength may closely be correlated to the larger cell size and the incomplete cell boundaries phase.The obtained results infer that the flexural strength is susceptible to not only grain size but also the cellular structure of the magnets.展开更多
We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimen...We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.52375348,52175331)National Natural Science Foundation of Shandong Province(Grant Nos.ZR2022ME014,ZR2020ZD04).
文摘Specially shaped permanent magnet structures can satisfy the requirements of equipment with limited space or unique shapes.Thereby,these optimize the distribution of magnetic fields.However,traditional manufacturing methods are limited by the mold design and insufficient material utilization.In this study,a polymer-based Nd_(2)Fe_(14)B(NdFeB)magnetic slurry was developed based on direct ink writing(DIW)3D printing technology.A rapidly volatilizable magnetic slurry was used to achieve 3D oriented controllable layering,thus realizing the direct molding fabrication of NdFeB permanent magnets with complex structures.By exploring and optimizing the 3D printing process parameters,specially shaped bonded NdFeB permanent magnet structures with high precision and shape fidelity were prepared.The test results indicated that the remnant magnetization of the printed magnets was proportional to the NdFeB content in the slurry,the coercivity closely matched that of the original powder,and the mechanical properties of the printed magnets were favorable.Building on this,a magnetically driven helical-structure robot was designed and printed to achieve stable motion in low-Reynolds-number fluids.This paper presents a new,low-cost solution for the room-temperature preparation of shape-bonded NdFeB permanent magnets.
基金supported by the National Key R&D Program of China (Grant No.2022YFA1403203)the National Natural Science Funds for Distinguished Young Scholar (Grant No.52325105)+2 种基金the National Natural Science Foundation of China (Grant Nos.12274411,12241405,52250418,and12404185)the Basic Research Program of the Chinese Academy of Sciences (CAS) Based on Major Scientific Infrastructures (Grant No.JZHKYPT-2021-08)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)。
文摘Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic(AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, Bose–Einstein distribution populates magnon states across all energies from opposite eigenmodes, and hence the magnon spin current is largely compensated. Contrary to this common observation,here, we show that magnets with X-type AFM stacking, where opposite magnetic sublattices form orthogonal intersecting chains, support giant magnon spin currents with minimal compensation. Our model Hamiltonian calculations predict magnetic chain locking of magnon spin currents in these X-type magnets, significantly reducing their compensation ratio. In addition, the one-dimensional nature of the chain-like magnetic sublattices enhances magnon spin conductivities surpassing those of two-dimensional ferromagnets and canonical altermagnets. Notably, uncompensated X-type magnets, such as odd-layer antiferromagnets and ferrimagnets, can exhibit magnon spin currents polarized opposite to those expected by their net magnetization. These unprecedented properties of X-type magnets, combined with their inherent advantages resulting from AFM coupling, offer a promising new path for low-power high-performance spintronics.
基金Project supported by the National Key Research and Development Program of China(2021YFB3502803)The"Pioneer"and"Leading Goose"R&D program of Zhejiang(2022C01020)+3 种基金Science and Technology Program of Zhejiang Province(2024C01145)The Key Research and Development Program of Ningbo City(2023Z093)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Program。
文摘Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepared by combining the single/dual/multi-main-phase processes with the Dy-containing grain boundary diffusion process(GBDP).The effects of base magnets with different Ce distributions on GBDP were systematically investigated.Magnetic properties and micro structure analysis reveal that high-performance multi-main-phase(MMP)diffused magnets with remanence(Br)up to 12.52 kGs,coercivity up to 16.08 kOe,and maximum magnetic energy product up to 36.44 MGOe are obtained,which is attributed to the regulation of Ce by the MMP process,and the optimization of microstructure by Gd-Cu alloy.Meanwhile,the diffusion efficiency is significantly improved because of Ce being restricted to the grain core,which promotes the formation of a continuous structure at the grain boundaries,and the formation of a continuous multilayer shell grain structure with high anisotropy field,while the Br of the diffused magnet is maintained.Besides,magnetic domain analysis shows that the MMP diffused magnet effectively suppresses the nucleation of demagnetized domains and enhances the pinning effect of domain walls.The study establishes an experimental foundation for the development of sintered high Ce-content magnets showcasing superior performance.
基金Project supported by the National Natural Science Foundation of China(52361033)National Key Research and Development Program(2022YFB3505400)+3 种基金Ministry of Industry and Information Technology Heavy Rare Earth Special Use of Sintered NdFeB Project(TC220H06J)Academic and Technical Leaders in Major Disciplines in Jiangxi Province(2022BCJ23007)Jiangxi Province Science and Technology Cooperation Key Project(20212BDH80007)Jiangxi Graduate Student Innovation Special Fund Project(YC2023-B213)。
文摘Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properties of the diffusion matrix.Through the adjustment of the sintering process,we effectively prepared magnets with varied densities that serve as the matrix for grain boundary diffusion with TbH,diffusion.The mobility characteristics of the Nd-rich phase during the densification stage are leveraged to ensure a more extensive distribution of heavy rare earth elements within the magnets.According to the experimental results,the increase in coercivity of low-density magnets after diffusion is significantly greater than that of relatively high-density magnets.The coercivity values measured are 805.32 kA/m for low-density magnets and 470.3 kA/m for high-density magnets.Additionally,grain boundary diffusion notably enhances the density of initial low-density magnets,addressing the issue of low density during the sintering stage.Before the diffusion treatment,the Nd-rich phases primarily concentrate at the triangular grain boundaries,resulting in an increased number of cavity defects in the magnets.These cavity defects contain atoms in a higher energy state,making them more prone to transition.Consequently,the diffusion activation energy at the void defects is lower than the intracrystalline diffusion activation energy,accelerating atom diffusion.The presence of larger cavities also provides more space for atom migration,thereby promoting the diffusion process.After the diffusion treatment,the proportion of bulk Nd-rich phases significantly decreases,and they infiltrate between the grains to fill the cavity defects,forming continuous fine grain boundaries.Based on these observations,the study aims to explore how to utilize this information to develop an efficient technique for grain boundary diffusion.
基金Key Research and Development Program of Shandong Province(2021CXGC010310)Shandong Province Science and Technology Small and Medium Sized Enterprise Innovation Ability Enhancement Project(2023TSGC0287,2024TSGC0519)+1 种基金Shandong Provincial Natural Science Foundation(ZR2022ME222)National Natural Science Foundation of China(51702187)。
文摘Three types of NdFeB magnets with the same composition and different grain sizes were prepared,and then the grain boundary diffusion was conducted using metal Tb under the same technical parameters.The effect of grain size on the grain boundary diffusion process and properties of sintered NdFeB magnets was investigated.The diffusion process was assessed using X-ray diffractometer,field emission scanning electron microscope,and electron probe microanalyzer.The magnetic properties of the magnet before and after diffusion were investigated.The results show that the grain refinement of the magnet leads to higher Tb utilization efficiency and results in higher coercivity at different temperatures.It can be attributed to the formation of a deeper and more complete core-shell structure,resulting in better magnetic isolation and higher anisotropy of the Nd_(2)Fe_(14)B grains.This work may shed light on developing high coercivity with low heavy rare earth elements through grain refinement.
基金supported by the National Natural Science Foundation of China(No.22375157)the State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE23405)+2 种基金the Fundamental Research Funds for Central Universities(No.xtr052023002)the Special Support Plan of Shaanxi Province for Young Top-notch Talentthe Medical-Engineering Cross Project of the First Affiliated Hospital of XJTU(No.QYJC02)。
文摘Due to the ionic feature of the lanthanide ions,to straightly bridge two lanthanide(Ln)ions is rather challenging though this bridging mode is much beneficial to suppress the zero-field quantum tunneling of the magnetization(QTM)for single-molecule magnets(SMMs),a kind of nanosized magnetic materials for high-density information storage and magnetic resonance imaging contrast agent.Here we used an unusual terminal amino pyridine ligand which utilizes extensive supramolecular interactions to stabilize such an unusual linear bridging mode and obtained a series of such dimeric Ln(Ⅲ)complexes-{[LnL_(A)(4-NH_(2)py)_(5)]_(2)(μ-Cl)}[BPh_(4)]_(3)(For L_(A)^(-)=1-AdO^(-),1Ln;for L_(A)^(-)=~tBuO^(-),2Ln;Ln=Dy,Gd).More uniquely,the bridging chloride sits in the center of two improper rotation symmetry related Ln(Ⅲ)ions with local C_(5v)symmetry.The dimeric compounds 1Dy and 2Dy exhibit much slower low-temperature magnetic relaxation and thousands of times longer relaxation times at 2 K(τ_(2K)=2706.89 and 1437.05 s for 1Dy and 2Dy)compared to the diluted ones with the approaching magnetic property of the C_(5v)motifs(τ_(2K)=0.77 and 1.29 s for 1Dy@1Y and 2Dy@2Y).Though magnetic interactions mediated via the chloride bridge in both 1Dy and 2Dy are weak and antiferromagnetic,it is still very effective due to such a linear geometry to reduce the QTM effect in SMMs.
基金supported by the National Key R&D Program of China(Grant Nos.2024-YFA1408303 and 2022YFA1403301)the National Natural Sciences Foundation of China(Grant Nos.12474247 and 92165204)+1 种基金support from Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)Research Center for Magnetoelectric Physicsof Guangdong Province(Grant No.2024B0303390001).
文摘Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,realizing such magnets remains a significant challenge.Recently,some studies have suggested honeycomb magnets A_(3)Ni_(2)XO_(6)(A=Li,Na;X=Bi,Sb)with a high spin S=1 could serve as potential candidates for realizing strong Kitaev interactions.In this work,we systematically investigate their magnetic properties,with a particular emphasis on their Kitaev interactions,using first-principles calculations and Monte Carlo simulations.Our results indicate that all A_(3)Ni_(2)XO_(6)compounds are zigzag antiferromagnets,and their magnetic moments almost tend to be out of plane.We find that their dominant magnetic interactions are the nearest-neighbor ferromagnetic and third-nearest-neighbor antiferromagnetic Heisenberg interactions,while their Kitaev interactions are extremely weak.By analyzing their electronic structures and the mechanism of generating their magnetic interactions,we reveal that either artificially tuning spin-orbit coupling or applying strain cannot produce sufficient spin-orbit entangled states to realize the intriguing Kitaev interactions.Our work advances the understanding of the magnetism in A_(3)Ni_(2)XO_(6)compounds and provides insights for further exploration of Kitaev physics in honeycomb magnets.
基金Project supported by the National Key R&D Program of China(2022YFB3505003,2021YFB3502802)the Natural Science Foundation of Zhejiang Province(LQ23E010001)+3 种基金"Pioneer"and"Leading Goose"R&D program of Zhejiang(2022C01020)Key Research and Development Program of Ningbo City(2023Z093)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Program。
文摘Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)alloys,which are obviously higher than that of Dy58Co42GBD-treated magnet with 16.64 kOe,Further thermal stability studies indicate that the thermal stability of Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treated magnets is further improved compared to the Dy58Co42GBD-treated magnet The results show that th e temperature coefficients of remanence(20-120℃)are reduced from-0.148%/℃to-0.134%/℃and-0.132%/℃by Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treatment,respectively.Besides,the irreversible magnetic flux losses(120℃)for Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)diffusion magnets are 4.76%and 2.79%,respectively.Microstructural analyses demonstrate that the presence of Cu and Al elements reduces the excessive accumulation of Dy and Co on the surface in the diffusion magnets an d improves the diffusion depth and utilization of Dy and Co.Furthermore,the flow of Co from the triple junction phase to the thin grain boundary phase is promoted,which contributes to the uniform distribution of Co.In addition,the dynamic evolution of the magnetic domain structure during the temperature rise process was studied.This work provides insight into the preparation of high-performance and high-thermal stability magnets.
基金supported by the National Natural Science Foundation of China(Nos.52261037,52088101)the Key research project of Jiangxi Province(No.20203ABC28W006)the Double-Thousand Plan of Jiangxi Province(No.jxsq2023101057).
文摘The low coercivity is the major factor inhibiting the large-scale commercial utilization of Nd-Ce-Fe-B sintered magnets.In this work,we achieved a record-high coercivity of 15.04 kOe in Ga-doped Nd-Ce-Fe-B sintered magnets with 30 wt%Ce replacing Nd,demonstrating enormous potential.The Ga-doped Nd-Ce-Fe-B magnets with higher boron(HB)and lower boron(LB)content are designed.The coercivity of the HB magnet increases slightly from 10.80 to 12.26 kOe after annealing,attributed to the optimized distribution of grain boundary(GB)phases.In contrast,the coercivity of the LB magnet remarkably increases from 8.13 to 15.04 kOe after annealing.Microstructural observations indicate that the narrow GB phase in the as-sintered magnet is rich in Fe,and the strong exchange coupling of adjacent grains resulted in low coercivity.The evolution of Ga-rich phases reveals a potential formation mechanism of the RE_(6)Fe_(13)Ga phase,that is the RE-Fe amorphous phase and REGa phase in the as-sintered magnet combine to form the RE_(6)Fe_(13)Ga phase and RE-Ga amorphous phase during post-sinter annealing(RE:rare earth).Moreover,the GB phase of the annealed magnet transforms into a Fe-lean phase with a thickness of 16.4 nm.Magnetization and demagnetization behavior characterizations reveal that the exchange decoupling of adjacent grains induced by the optimized GB phases is the main reason for the remarkable coercivity enhancement,which is also validated by micromagnetic simulations.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFB3500300,2023YFB3507000,and 2023XYJG0001-01-03)the National Natural Science Foundation of China(Grant No.52171167)Inner Mongolia Northern Rare Earth Advanced Materials Technology Innovation Co.,Ltd.Project(Grant No.CXZX-B-202304-0004).
文摘The enhancement of coercivity in Nd-Fe-B sintered magnets modified by Pr_(58)Dy_(10)Cu_(32)alloy was investigated through scanning electron microscope(SEM)and in-situ magneto-optic Kerr effect(MOKE)microscopy.The modification treatment resulted in the formation of a smooth and continuous weakly magnetic grain boundary layer and the(Nd,Pr,Dy)_(2)Fe_(14)B main phase with a high magnetocrystalline anisotropy field,leading to an increased coercivity of 23 kOe.MOKE observations revealed that the dynamic evolution of the maze domain area under an external magnetic field varied significantly between the original and modified magnets.Compared with the original magnets,the modified magnets exhibited a slower decrease in maze domain area during magnetization and a slower increase during reverse magnetization,contributing to the observed coercivity enhancement.
基金supported by the National Key Research and Development Program of China(No.2021YFB3502802)Zhejiang Provincial Department of Science and Technology of China(No.2022C01020)+3 种基金the Key Research and Development Program of Ningbo City(No.2023Z093)Ningbo Natural Science Foundation(No.2023J344)the Natural Science Foundation of Zhejiang Province(No.LQ23E010001)Ningbo Young Science and Technology Innovation Leading Talents(No.2023QL040).
文摘By developing high comprehensive performance((BH)_(max)+H_(cj)),Nd-Fe-B magnets can operate stably in high-temperature applications,greatly expanding the application scenarios of them.Unfortunately,there is a constraint relationship between coercivity(H_(cj))and maximum magnetic energy product((BH)_(max)),and an increase in H_(cj) always accompanies a decrease in(BH)_(max).Here,the excellent comprehensive magnetic performance of up to 86.54,namely(BH)_(max) of 42.33 MGOe and H_(cj) of 44.21 kOe,is unprecedented in the sintered Nd-Fe-B magnets.This magnet is obtained by designing a unique grain structure through micrometallurgical reactions to prepare a matrix with excellent comprehensive performance,and then by stepwise diffusion,the(BH)_(max) and H_(cj) of the magnet are simultaneously enhanced.The magnet prepared in this way has a“double-shell core”structure and Tb segregation distribution inside the core.The working temperature of the magnet in this work reached 280℃,providing a new approach for the development of high-performance Nd-Fe-B magnets.
基金Project supported by the National Key R&D Program of China(2022YFB3505301)the National Key R&D Program of Shanxi Province(202302050201014)+2 种基金the National Natural Science Foundation of China(12304148)the Natural Science Basic Research Program of Shanxi Province(202203021222219)the China Postdoctoral Science Foundation(2023M731452)。
文摘Previous studies have demonstrated that increasing Fe doping content can enhance the saturation magnetization and maximum energy product of 2:17-type Sm-Co rare-earth permanent magnets.Howeve r,syste matic theo retical calculations and the effects of other transition metal dopants have yet to be explored.This study employed first-principles computational methods to investigate the effects of doping with 3d and Zr transition metal elements on the structural stability,magnetic properties,and electronic structure of Sm_(2)Co_(17)permanent magnets.The results indicate that Sc and Zr tend to occupy the Sm-6c site,while Ni,Cu and Zn preferentially occupy the 18h site,and Ti,V,Cr,Mn and Fe primarily occupy the Co-6c site.Except for V and Cu,all other elements effectively improve the structural stability of the doped systems.Additionally,Mn and Fe doping can significantly enhance the total magnetic moment and magnetocrystalline anisotropy energies of the Sm_(2)Co_(17)system,while Cr only increases the total magnetic moment.More importantly,doping with Cr,Mn and Fe within the doping co ntent range of9.8 at%<x<35.29 at% can simultaneously improve the structural stability,total magnetic moment and magnetocrystalline anisotropy energy of the Sm_(2)Co_(17) system.Our study provides valuable theoretical guidance for experimental exploration and is expected to promote the development and application of novel rare-earth permanent magnetic materials.
基金Project supported by National Key Research and Development Program of China(2021YFB3500100)National Natural Science Foundation of China(52301068)。
文摘In this work,the effect of the Al addition amount in the TbAl coatings on the grain boundary diffusion proces s(GBDP)of Tb were systematically explored.Direct current magnetron sputtering(DCMS)method was utilized in co-sputtering manner to synthesize the TbAl coatings with certain Tb consumption and various Al addition amount.Results show that the moderate Al addition amount significantly improves the wettability of grain boundary(GB)phases,thereby acquiring more continuous and uniform Tb-rich shells and GB phases between matrix phases,as well as deeper diffusion depth and denser microstructure.The largest increase amplitude of intrinsic coercivity(Hcj)is improved by 78.4%in TbAIdiffused magnet compared to the pure Tb-diffused magnet,while the remanence(Br)is expected to show an overall decreasing tendency accompanied with a slight increase in the decreasing process.However,when the Al addition amount is excessive,magnetic dilution effect is enhanced,and the Tbrich shells and GB phases between matrix phases become fuzzy and even invisible,which in turn deteriorates the magnetic properties of diffused magnets.
基金Project supported by National Key R&D Project of China(2022YFB3505400)Jiangxi Natural Science Foundation Youth Fund(20232BAB214011)+3 种基金the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)National Natural Science Foundation of China(52361033)Ministry of Industry and Information Technology Heavy Rare Earth Special Use of Sintered NdFeB Project(TC220H06J)Academic and Technical Leaders in Major Disciplines in Jiangxi Province(20225BCJ23007)。
文摘The particles of different shapes,multi-walled carbon nanotubes(CNTs)and graphene nanosheets(GNs),were used to modulate the mechanical properties and anisotropy of the magnets.It is found that the rodshaped CNTs can increase the bending strength ratio of the c and a axes of the magnet from 1.114 to1.254,while flake-like GNs decrease it from 1.114 to 0.989.In-depth analysis indicates that the mechanical anisotropy of the magnet is greatly influenced by the distribution and thickness of the rare earth phase(RE phase),with the thicker RE phase demonstrating greater capability of blunting at the crack tip.Using the finite element method,it is found that the strength of brittle material can be enhanced by the additive particles owing to the inhibition of crack initiation and stress conduction,as well as the deflection of the crack.The flake-like GNs weaken the mechanical anisotropy of magnets by varying the distribution of RE phase and form a shell encompassing the main phase.Nonetheless,the alignment of CNTs occurring in the process of magnetic orientation process can significantly increase the mechanical anisotropy of the magnet.In particular,when loaded in the parallel c axis(c_(‖))direction,the cracks need to penetrate the main phase due to the strong frictional interlocking between CNTs and the main phase grains,in which case the bending strength will be significantly increased.By contrast,when loaded in the vertical c axis(c_(⊥))direction,the cracks can bypass the rod-like particles and change directions of propagation.As such,the increase in bending strength is smaller than that in loading along with the cll direction.
基金supported by the National Natural Science Foundation of China(Grant Nos.12404085,12474122,52171188,51771127,and 52111530143)the Fund from DOE-BES(Grant No.DE-FG02-05ER46237)the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province,China(Grant No.2021ZYD0025)。
文摘Using exact diagonalization of the Hamiltonian and transition matrix in the energy eigenbasis,we perform model calculations of the magnetic relaxation rate in single-molecule magnets.A careful examination of the transition matrix reveals that resonant tunneling does not enhance transitions between the nearly degenerate states;rather,it suppresses them.Instead,transitions from one state in the degenerate pair to neighboring states of the other are significantly enhanced.We conduct a detailed analysis of the transition rates to clearly demonstrate how resonant tunneling modulates these processes.This work provides a substantial reinterpretation of the resonant magnetic relaxation in single-molecule magnets and clearly identifies the dominant relaxation pathways.
基金supported by the National Key R&D Program(Grant No.2022YFA1402204)the National Natural Science Foundation of China(Grant No.52471020)。
文摘We investigated the efficiency of charge-to-spin conversion in two-dimensional Rashba altermagnets,a class of materials that combines the characteristics of both ferromagnets and antiferromagnets.Using quantum linear response theory,we quantified the longitudinal and spin Hall conductivities in this system and demonstrated a substantial enhancement in the spin Hall angle below the band crossing point through the dual effects of relativistic spin–orbit interaction and nonrelativistic altermagnetic exchange interaction.Additionally,the results showed that the skew scattering and intrinsic mechanisms arising from Fermi sea states are almost negligible in this system,in contrast to conventional ferromagnetic Rashba systems.Our findings not only elucidate the spin dynamics in Rashba altermagnets but also pave the way for developing novel strategies for manipulating charge-to-spin conversion via sophisticated control of noncollinear and collinear out-of-plane spin textures.
文摘If you are asked what requires you to win a lottery and costs RMB 168,it may not be a car license plate,but a fridge magnet.Collecting fridge magnets has quietly become a popular culture in recent years.Many young people have more demand for fridge magnets than for refrigerators.The empty refrigerator covered with fridge magnets has become a trend.People with no idea how to choose souvenirs regard the fridge magnets as the best gifts,allowing this seemingly inconspicuous small product to create a billion-yuan market.
基金the support from the Sichuan Normal Universitysupport from the National Natural Science Foundation of China(Grant No.22375157)+1 种基金support from the National Natural Science Foundation of China(Grant Nos.12474122,52171188,51771127,and 52111530143)the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(Grant No.2021ZYD0025)。
文摘Lanthanide-based single-molecule magnets exhibit broad magnetic hysteresis,which manifests as slow magnetic relaxation in strong magnetic fields.However,the origin of the nontrivial hysteresis behaviors remains debated.Here,we propose two influential mechanisms:activation of optical-phonon-mediated direct transitions within the ground-state doublet and the resonant Raman process.These discoveries,coupled with the g-factor anisotropy,account for the observed hysteresis behaviors in the regimes of fast magnetic relaxation.Our findings complement the recognized mechanisms used to interpret the magnetic hysteresis of single-molecule magnets.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3503100,2022YFB3505303,2021YFB3501500)the Major Projects in the Inner Mongolia Autonomous Region of China.
文摘In this work,a small amount of Al_(2)O_(3)powders(≤0.3 wt%)were incorporated into the Sm_(2)Co_(17)-type sin-tered magnets,obtaining both high mechanical and magnetic properties.It is found that 0.1%weight percentage of Al_(2)O_(3)doping is enough to enhance the flexural strength by about 20%(∼180 MPa for the case of the c-axis parallel to height).Meanwhile,the(BH)max remains around 219 kJ/m^(3),and Hcj is 2052 kA/m,which is over 95%of that of the original magnets without doping.The promising improvement in flexural strength is mainly attributed to the grain size effective refinement caused by Sm_(2)O_(3)particles including newly-formed ones from the reaction of the Al_(2)O_(3)powder and Sm in the matrix.Furthermore,the grain size of the magnets decreases significantly with increasing of Al_(2)O_(3)doping up to 0.3 wt%.Espe-cially,the grain size of 0.3 wt%Al_(2)O_(3)doped magnets is refined by 37%.However,the flexural strengths(for the c-axis parallel to height and the c-axis parallel to width cases)of the magnets decrease sequen-tially and are even lower than that of the original magnet.The microstructure investigations indicate that the decrease in flexural strength may closely be correlated to the larger cell size and the incomplete cell boundaries phase.The obtained results infer that the flexural strength is susceptible to not only grain size but also the cellular structure of the magnets.
基金supported by the National Key Projects for Research and Development of China(Grant Nos.2021YFA1400400 and 2024YFA1408104)the National Natural Science Foundation of China(Grant Nos.12434005,12374137,and 92165205).
文摘We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.