期刊文献+
共找到289,491篇文章
< 1 2 250 >
每页显示 20 50 100
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
1
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:2
2
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA machine learning
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
3
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
A Comparison among Different Machine Learning Algorithms in Land Cover Classification Based on the Google Earth Engine Platform: The Case Study of Hung Yen Province, Vietnam
4
作者 Le Thi Lan Tran Quoc Vinh Phạm Quy Giang 《Journal of Environmental & Earth Sciences》 2025年第1期132-139,共8页
Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status ... Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status of land covers in Hung Yen province of Vietnam using Landsat 8 OLI satellite images,a free data source with reasonable spatial and temporal resolution.The results of the study show that all three algorithms presented good classification for five basic types of land cover including Rice land,Water bodies,Perennial vegetation,Annual vegetation,Built-up areas as their overall accuracy and Kappa coefficient were greater than 80%and 0.8,respectively.Among the three algorithms,SVM achieved the highest accuracy as its overall accuracy was 86%and the Kappa coefficient was 0.88.Land cover classification based on the SVM algorithm shows that Built-up areas cover the largest area with nearly 31,495 ha,accounting for more than 33.8%of the total natural area,followed by Rice land and Perennial vegetation which cover an area of over 30,767 ha(33%)and 15,637 ha(16.8%),respectively.Water bodies and Annual vegetation cover the smallest areas with 8,820(9.5%)ha and 6,302 ha(6.8%),respectively.The results of this study can be used for land use management and planning as well as other natural resource and environmental management purposes in the province. 展开更多
关键词 Google Earth Engine Land Cover LANDSAT machine Learning algorithm
在线阅读 下载PDF
Neuromorphic devices assisted by machine learning algorithms
5
作者 Ziwei Huo Qijun Sun +4 位作者 Jinran Yu Yichen Wei Yifei Wang Jeong Ho Cho Zhong Lin Wang 《International Journal of Extreme Manufacturing》 2025年第4期178-215,共38页
Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decisio... Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decision making.It features parallel interconnected neural networks,high fault tolerance,robustness,autonomous learning capability,and ultralow energy dissipation.The algorithms of artificial neural network(ANN)have also been widely used because of their facile self-organization and self-learning capabilities,which mimic those of the human brain.To some extent,ANN reflects several basic functions of the human brain and can be efficiently integrated into neuromorphic devices to perform neuromorphic computations.This review highlights recent advances in neuromorphic devices assisted by machine learning algorithms.First,the basic structure of simple neuron models inspired by biological neurons and the information processing in simple neural networks are particularly discussed.Second,the fabrication and research progress of neuromorphic devices are presented regarding to materials and structures.Furthermore,the fabrication of neuromorphic devices,including stand-alone neuromorphic devices,neuromorphic device arrays,and integrated neuromorphic systems,is discussed and demonstrated with reference to some respective studies.The applications of neuromorphic devices assisted by machine learning algorithms in different fields are categorized and investigated.Finally,perspectives,suggestions,and potential solutions to the current challenges of neuromorphic devices are provided. 展开更多
关键词 neuromorphic devices machine learning algorithms artificial synapses MEMRISTORS field-effect transistors
在线阅读 下载PDF
Reaction process optimization based on interpretable machine learning and metaheuristic optimization algorithms
6
作者 Dian Zhang Bo Ouyang Zheng-Hong Luo 《Chinese Journal of Chemical Engineering》 2025年第8期77-85,共9页
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u... The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes. 展开更多
关键词 Reaction process optimization Interpretable machine learning Metaheuristic optimization algorithm BIODIESEL
在线阅读 下载PDF
A Shufled Frog-Leaping Algorithm with Competition for Parallel Batch Processing Machines Scheduling in Fabric Dyeing Process
7
作者 Mingbo Li Deming Lei 《Computer Modeling in Engineering & Sciences》 2025年第5期1789-1808,共20页
As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that a... As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP. 展开更多
关键词 Batch processing machines shuffled frog-leaping algorithm COMPETITION parallel machines scheduling
在线阅读 下载PDF
Variogram modelling optimisation using genetic algorithm and machine learning linear regression:application for Sequential Gaussian Simulations mapping
8
作者 André William Boroh Alpha Baster Kenfack Fokem +2 位作者 Martin Luther Mfenjou Firmin Dimitry Hamat Fritz Mbounja Besseme 《Artificial Intelligence in Geosciences》 2025年第1期177-190,共14页
The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of... The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of geostatistical analysis,particularly in mineral exploration.The study combines GA and machine learning to optimise variogram parameters,including range,sill,and nugget,by minimising the root mean square error(RMSE)and maximising the coefficient of determination(R^(2)).The experimental variograms were computed and modelled using theoretical models,followed by optimisation via evolutionary algorithms.The method was applied to gravity data from the Ngoura-Batouri-Kette mining district in Eastern Cameroon,covering 141 data points.Sequential Gaussian Simulations(SGS)were employed for predictive mapping to validate simulated results against true values.Key findings show variograms with ranges between 24.71 km and 49.77 km,opti-mised RMSE and R^(2) values of 11.21 mGal^(2) and 0.969,respectively,after 42 generations of GA optimisation.Predictive mapping using SGS demonstrated that simulated values closely matched true values,with the simu-lated mean at 21.75 mGal compared to the true mean of 25.16 mGal,and variances of 465.70 mGal^(2) and 555.28 mGal^(2),respectively.The results confirmed spatial variability and anisotropies in the N170-N210 directions,consistent with prior studies.This work presents a novel integration of GA and machine learning for variogram modelling,offering an automated,efficient approach to parameter estimation.The methodology significantly enhances predictive geostatistical models,contributing to the advancement of mineral exploration and improving the precision and speed of decision-making in the petroleum and mining industries. 展开更多
关键词 Variogram modelling Genetic algorithm(GA) machine learning Gravity data Mineral exploration
在线阅读 下载PDF
A Comprehensive Review of Face Detection/Recognition Algorithms and Competitive Datasets to Optimize Machine Vision
9
作者 Mahmood Ul Haq Muhammad Athar Javed Sethi +3 位作者 Sadique Ahmad Naveed Ahmad Muhammad Shahid Anwar Alpamis Kutlimuratov 《Computers, Materials & Continua》 2025年第7期1-24,共24页
Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensi... Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research. 展开更多
关键词 Face recognition algorithms face detection techniques face recognition/detection datasets
在线阅读 下载PDF
An Adaptive Cooperated Shuffled Frog-Leaping Algorithm for Parallel Batch Processing Machines Scheduling in Fabric Dyeing Processes
10
作者 Lianqiang Wu Deming Lei Yutong Cai 《Computers, Materials & Continua》 2025年第5期1771-1789,共19页
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ... Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility. 展开更多
关键词 Batch processing machine parallel machine scheduling shuffled frog-leaping algorithm fabric dyeing process machine eligibility
在线阅读 下载PDF
Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms
11
作者 Irbek Morgoev Roman Klyuev Angelika Morgoeva 《Computer Modeling in Engineering & Sciences》 2025年第5期1381-1399,共19页
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of... Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry. 展开更多
关键词 Non-technical losses smart grid machine learning electricity theft FRAUD ensemble algorithm hybrid method forecasting classification supervised learning
在线阅读 下载PDF
Back analysis of rock mass parameters in mechanized twin tunnels based on coupled auto machine learning and multi-objective optimization algorithm
12
作者 Chengwen Wang Xiaoli Liu +4 位作者 Jiubao Li Enzhi Wang Nan Hu Wenli Yao Zhihui He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7038-7055,共18页
Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approache... Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations. 展开更多
关键词 Back analysis of rock parameters Auto machine learning Multi-objective optimization algorithm Mechanized twin tunnels Parametric modeling
在线阅读 下载PDF
Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine
13
作者 LI Qingwei FU Can +2 位作者 XUE Wenli WEI Yongqiang SHEN Zhiwen 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期252-261,共10页
To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating t... To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability. 展开更多
关键词 lithium-ion battery state of health(SOH) extreme learning machine(ELM) differential evolution(DE)algorithm
原文传递
Construction and validation of a machine learning algorithm-based predictive model for difficult colonoscopy insertion
14
作者 Ren-Xuan Gao Xin-Lei Wang +6 位作者 Ming-Jie Tian Xiao-Ming Li Jia-Jia Zhang Jun-Jing Wang Jing Gao Chao Zhang Zhi-Ting Li 《World Journal of Gastrointestinal Endoscopy》 2025年第7期149-161,共13页
BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intr... BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intraoperative strategies.AIM To evaluate the predictive performance of machine learning(ML)algorithms for DCI by comparing three modeling approaches,identify factors influencing DCI,and develop a preoperative prediction model using ML algorithms to enhance colonoscopy quality and efficiency.METHODS This cross-sectional study enrolled 712 patients who underwent colonoscopy at a tertiary hospital between June 2020 and May 2021.Demographic data,past medical history,medication use,and psychological status were collected.The endoscopist assessed DCI using the visual analogue scale.After univariate screening,predictive models were developed using multivariable logistic regression,least absolute shrinkage and selection operator(LASSO)regression,and random forest(RF)algorithms.Model performance was evaluated based on discrimination,calibration,and decision curve analysis(DCA),and results were visualized using nomograms.RESULTS A total of 712 patients(53.8%male;mean age 54.5 years±12.9 years)were included.Logistic regression analysis identified constipation[odds ratio(OR)=2.254,95%confidence interval(CI):1.289-3.931],abdominal circumference(AC)(77.5–91.9 cm,OR=1.895,95%CI:1.065-3.350;AC≥92 cm,OR=1.271,95%CI:0.730-2.188),and anxiety(OR=1.071,95%CI:1.044-1.100)as predictive factors for DCI,validated by LASSO and RF methods.Model performance revealed training/validation sensitivities of 0.826/0.925,0.924/0.868,and 1.000/0.981;specificities of 0.602/0.511,0.510/0.562,and 0.977/0.526;and corresponding area under the receiver operating characteristic curves(AUCs)of 0.780(0.737-0.823)/0.726(0.654-0.799),0.754(0.710-0.798)/0.723(0.656-0.791),and 1.000(1.000-1.000)/0.754(0.688-0.820),respectively.DCA indicated optimal net benefit within probability thresholds of 0-0.9 and 0.05-0.37.The RF model demonstrated superior diagnostic accuracy,reflected by perfect training sensitivity(1.000)and highest validation AUC(0.754),outperforming other methods in clinical applicability.CONCLUSION The RF-based model exhibited superior predictive accuracy for DCI compared to multivariable logistic and LASSO regression models.This approach supports individualized preoperative optimization,enhancing colonoscopy quality through targeted risk stratification. 展开更多
关键词 COLONOSCOPY Difficulty of colonoscopy insertion machine learning algorithms Predictive model Logistic regression Least absolute shrinkage and selection operator regression Random forest
暂未订购
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
15
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
基于大模型和MAC归属的家庭终端型号关联识别方法
16
作者 王飞 耶旭立 韩莉 《中国宽带》 2026年第1期1-3,共3页
随着家庭宽带数字化发展,家庭侧组网复杂多样,本文针对家庭网络环境下海量异构终端设备精准识别的需求,提出融合MAC地址组织唯一标识符解析与设备名称语义理解的双模态识别框架。通过构建MAC前缀-设备厂商知识图谱,结合基于大语言模型... 随着家庭宽带数字化发展,家庭侧组网复杂多样,本文针对家庭网络环境下海量异构终端设备精准识别的需求,提出融合MAC地址组织唯一标识符解析与设备名称语义理解的双模态识别框架。通过构建MAC前缀-设备厂商知识图谱,结合基于大语言模型的设备名称特征提取算法,实现非纳管设备的细粒度型号识别。通过实际应用验证,此方法有效解决了传统识别方式的不足,提升了识别准确率,对运营商优化网络服务、开展精准营销具有重要意义。 展开更多
关键词 家庭宽带 mac归属 大模型 光猫探针 终端型号 精准识别
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
17
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
18
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
A novel approach to identify the spatial characteristics of ozone-precursor sensitivity based on interpretable machine learning
19
作者 Huiling He Kaihui Zhao +6 位作者 Zibing Yuan Jin Shen Yujun Lin Shu Zhang Menglei Wang Anqi Wang Puyu Lian 《Journal of Environmental Sciences》 2026年第1期54-63,共10页
To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) po... To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) pollution control strategies.However,currently widely-used methods,such as statistical models and numerical models,exhibit inherent limitations in identifying OPS in a timely and accurate manner.In this study,we developed a novel approach to identify OPS based on eXtreme Gradient Boosting model,Shapley additive explanation(SHAP)al-gorithm,and volatile organic compound(VOC)photochemical decay adjustment,using the meteorology and speciated pollutant monitoring data as the input.By comparing the difference in SHAP values between base sce-nario and precursor reduction scenario for nitrogen oxides(NO_(x))and VOCs,OPS was divided into NO_(x)-limited,VOCs-limited and transition regime.Using the long-lasting O_(3) pollution episode in the autumn of 2022 at the Guangdong-Hong Kong-Macao Greater Bay Area(GBA)as an example,we demonstrated large spatiotemporal heterogeneities of OPS over the GBA,which were generally shifted from NO_(x)-limited to VOCs-limited from September to October and more inclined to be VOCs-limited at the central and NO_(x)-limited in the peripheral areas.This study developed an innovative OPS identification method by comparing the difference in SHAP value before and after precursor emission reduction.Our method enables the accurate identification of OPS in the time scale of seconds,thereby providing a state-of-the-art tool for the rapid guidance of spatial-specific O_(3) control strategies. 展开更多
关键词 O_(3)-precursor sensitivity machine learning Extreme gradient boosting model Shapley algorithm Greater bay area
原文传递
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
20
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm Support vector machine Feature extraction RECOGNITION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部