The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
Mining activities have caused significant land degradation globally,emphasizing the need for effective restoration.Microbial inoculants offer a promising solution for sustainable remediation by enhancing soil nutrient...Mining activities have caused significant land degradation globally,emphasizing the need for effective restoration.Microbial inoculants offer a promising solution for sustainable remediation by enhancing soil nutrients,enzyme activities,and microbial communities to support plant growth.However,the mechanisms by which inoculants influence soil microbes and their relationship with plant growth require further investigation.Metagenomic sequencing was employed for this study,based on a one-year greenhouse experiment,to elucidate the effects of Bacillus thuringiensis NL-11 on the microbial functions of abandoned mine soils.Our findings revealed that the application of microbial inoculants significantly enhanced the soil total carbon(TC),total sulfur(TS),organic carbon(SOC),available phosphorus(AP),ammonium(NH4+),urease,arylsulfatase,phosphatase,β-1,4-glucosidase(BG),β-1,4-N-acetylglucosaminidase(NAG).Moreover,this led to substantial improvements in plant height,as well as aboveground and belowground biomass.Microbial inoculants impacted functional gene structures without altering diversity.The normalized abundance of genes related to the degradation of carbon and nitrogen,methane metabolism,and nitrogen fixation were observed to increase,as well as the functional genes related to phosphorus cycling.Significant correlations were found between nutrient cycling gene abundance and plant biomass.Partial Least Squares Path Model analysis showed that microbial inoculants not only directly influenced plant biomass but also indirectly affected the plant biomass through C cycle modifications.This study highlights the role of microbial inoculants in promoting plant growth and soil restoration by improving soil properties and enhancing normalized abundance of nutrient cycling gene,making them essential for the recovery of abandoned mine sites.展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
This paper is concerned with a diffusive Ivlev-type predator-prey system with Smith growth and a protection zone. By discussing the existence and non-existence of positive solutions,we discover that the incorporation ...This paper is concerned with a diffusive Ivlev-type predator-prey system with Smith growth and a protection zone. By discussing the existence and non-existence of positive solutions,we discover that the incorporation of the Smith growth function has enabled us to obtain a more precise criterion when judging the structure of bifurcation solutions, and determine a critical size for the protection zone. The results indicate that if the size of the protection zone is below the critical patch size, then the system has no positive steady state solution for excessively high intrinsic growth rates of predators. Conversely, if the size of the protection zone exceeds the critical patch size, there exists positive steady state solution regardless of how large the intrinsic growth rate of the predators is.展开更多
The current investigation focuses on intertwined relationships of ecology and aquaculture for the benefit of farmers involved in fish farming practices.The study evaluated glucosinolate reduction in black,brown,and wh...The current investigation focuses on intertwined relationships of ecology and aquaculture for the benefit of farmers involved in fish farming practices.The study evaluated glucosinolate reduction in black,brown,and white mustard meals as fish feed ingredients for Indian Major Carps.Fish were fed with 10%mustard meal-supplemented diets in three forms:Raw(R),Anti-nutritional Rich(AR),and Anti-nutritional Lowered(AL),alongside a control group using floating feed.The three-month indoor experiment(September-November 2023)was conducted in FRP tanks with triplicate treatments.Blood analysis revealed compromised health in AR-fed carps,with reduced hemoglobin levels in rohu,catla and mrigal and elevated total leukocyte counts indicating inflammation in all the three carps studied here.Liver function was impaired in AR-fed fish,shown by increased alanine transaminase levels,highest in rohu followed by mrigal and catla.Histopathological examination of AR-fed carps liver tissue revealed necrotic spots,deformed hepatocytes,and significant vacuolation.In contrast,AL-fed fish demonstrated improved health parameters through Complete Blood Count analysis,liver function tests,and histo-pathological observations,suggesting successful reduction of anti-nutritional factors in the processed mustard meals.In near future,replacement of unprocessed seed meal with processed seed meal will lead to economic gains in fish farming.展开更多
The karst forest in southwestern China is characterized by thin soil layers,numerous fissures and holes,resulting in low soil water availability and poor water retention,making it challenging for plant growth and surv...The karst forest in southwestern China is characterized by thin soil layers,numerous fissures and holes,resulting in low soil water availability and poor water retention,making it challenging for plant growth and survival.While the relationship between plant functional traits and tree growth performance has been extensively studied,the links between tree seasonal growth and drought-tolerant traits in tree species with different leaf habit remains poorly understood.This study evaluated the associations between four-year averaged rainy season stem diameter growth rate and 17 branch and leaf traits across evergreen and deciduous species in a tropical karst forest in southwest China.The cross-species variations in tree growth rates were related to plant hydraulic traits(e.g.,vessel lumen diameter,xylem vessel density,stomatal density,and stomatal size)and leaf anatomical traits(e.g.,total leaf thickness,lower/upper epidermis thickness,and spongy thickness).The growth of evergreen trees exhibited lower hydraulic efficiency but greater drought tolerance than deciduous tree,which enabled them to maintain higher persistence under low soil water availability and consequently a relatively longer growing season.In contrast,deciduous species showed no correlation between their functional traits and growth rate.The distinct water use strategies of evergreen and deciduous trees may offer a potential explanation for their co-existence in the tropical karst forests.展开更多
Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrat...Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrates in response to various stress conditions. Beyond their role in stress adaptation, certain GSTs are integral regulators of plant growth and development, contributing to a range of physiological processes. Most GST proteins exhibit dual enzymatic activities, functioning as both transferases and peroxidases, which enables their involvement in diverse cellular processes, including detoxification and stress responses. Recent advancements, particularly in X-ray crystallography, have enabled detailed structural analysis of GST proteins, significantly enhancing our understanding of their biological functions. This review offers a comprehensive overview of the classification and structural characteristics of GSTs in plants. It also highlights recent findings on their roles in plant growth and development, cell signaling, catalytic transport, and stress tolerance. Furthermore, key scientific challenges related to GSTs are discussed, focusing on their potential applications in agriculture. These insights aim to facilitate the screening of functional GST genes and support molecular breeding efforts across diverse crop species.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
A tree's basal area(BA)and wood volume scale exponentially with tree diameter in species-specifc patterns.Recent observed increases in tree growth suggest these allometric relationships are shifting in response to...A tree's basal area(BA)and wood volume scale exponentially with tree diameter in species-specifc patterns.Recent observed increases in tree growth suggest these allometric relationships are shifting in response to climate change,rising CO_(2) levels,and/or changes in forest management.We analyzed 9,214 cores from nine conifer and 11 broadleaf species grown in managed mixed-species stands in the upper Midwest to quantify how well diameter(diameter at breast height(DBH))serves to predict BA growth and above-ground wood and carbon(C).These samples include many large trees.We ft mixed models to predict BA growth and above-ground biomass/C from diameter,tree height,and the BA of nearby trees while controlling for site effects.Models account for 55%–83%of the variance in log(recent growth),improving predictions over earlier models.Growth-diameter scaling exponents covary with certain leaf and stem(but not wood)functional traits,reflecting growth strategies.LogBA increment scales linearly with log(diameter)as trees grow bigger in 16/20 species and growth actually accelerates in Quercus rubra L.Three other species plateau in growth.Growth only decelerates in red pine,Pinus resinosa Ait.Growth in whole-tree,above-ground biomass,and C accelerate even more strongly with diameter(mean exponent:2.08 vs.1.30 for BA growth).Sustained BA growth and accelerating wood/C growth contradict the common assumption that tree growth declines in bigger trees.Yield tables and silvicultural guidelines should be updated to reflect these current relationships.Such revisions will favor delaying harvests in many managed stands to increase wood production and enhance ecosystem values including C fxation and storage.Further research may resolve the relative roles of thinning,climatic conditions,nitrogen inputs,and rising CO2 levels on changing patterns of tree growth.展开更多
Objective:To discuss the effect of Glycyrrhiza uralensis(G.uralensis) Fisch polysaccharide on growth performance and immunologic function in mice in Ural City,Xinjiang and to provide important data supporting the appl...Objective:To discuss the effect of Glycyrrhiza uralensis(G.uralensis) Fisch polysaccharide on growth performance and immunologic function in mice in Ural City,Xinjiang and to provide important data supporting the application of Glycyrrhiza polysaccharide.Methods:A total of100 Kunming mice aged 3 weeks old were randomly divided into 5 groups with 20 mice in each group(10 were females and 10 were males).About 0.5 mL normal saline was given to the mice of control group every day and 0.5 mL G.uralensis Fisch polysaccharide was given to the mice of other groups at the concentration of 1,20,50 and 100 mg/mL respectively.The growth performance(average body weight,average daily feed intake and feed efficiency),immune organ indexes(spleen index and thymus index) and immunologic function(serum IL-2,CD4^+/CD8^+ and the activity of NK cells) of mice in each group were detected continuously.Results:The average body weight,feed efficiency,serum IL-2,CD4^+/CD8^+ and the activity of NK cells of mice were increased with the increase of administrated time after administrating G.uralensis Fisch polysaccharide and were reached up the largest level on Day 28.At the same time,each index was proportional to the given dose and was significantly higher than those of control group and reached up the largest level at the administrated dose of 100 mg/mL.After administrating G.uralensis Fisch polysaccharide,the spleen index and thymus index of mice were increased with the increase of administrated dose and the spleen index and thymus index of mice administrated with the dose of 100 mg/mL were maximum which was more than 1.51 times and 1.43 times of that in control group respectively and the comparative differences showed statistical significance(P<0.05).The average daily feed intake of mice in each group was increased with the passage of lime and at the same time,the comparison of average daily feed intake of mice in each group was not significantly different(P>0.05).Conclusions:G.uralensis Fisch polysaccharide can significantly improve the growth performance and immunologic function of mice and laid a research basis for the clinical application of G.uralensis Fisch polysaccharide.展开更多
We review the biology and role of transforming growth factor beta 1 (TGF-β1) in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks (i.e., sciatic nerve, brachial plexus), wh...We review the biology and role of transforming growth factor beta 1 (TGF-β1) in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks (i.e., sciatic nerve, brachial plexus), which often leads to suboptimal functional recovery. Experimental studies have suggested that the reason for the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets, which is a result of the loss of the growth-supportive environment provided by the Schwann cells in the distal stump of injured nerves. Using an established chronic nerve injury and delayed repair animal model that accu- rately mimics chronic nerve injuries in humans, we summarize our key findings as well as others to better understand the pathophysiology of poor functional recovery. We demonstrated that 6 month TGF-β1 treat- ment for chronic nerve injury significantly improved Schwann cell capacity to support axonal regeneration. When combined with forskolin, the effect was additive, as evidenced by a near doubling of regenerated axons proximal to the repair site. We showed that in vivo application of TGF-β1 and forskolin directly onto chronically injured nerves reactivated chronically denervated Schwann cells, induced their proliferation, and upregulated the expression of regeneration-associated proteins. The effect of TGF-β1 and forskolin on old nerve injuries is quite impressive and the treatment regiment appears to mediate a growth-supportive milieu in the injured peripheral nerves. In summary, TGF-β1 and forskolin treatment reactivates chronical- ly denervated Schwann cells and could potentially be used to extend and prolong the regenerative responses to promote axonal regeneration.展开更多
No attempt has been made to date to model growth in girth of rubber tree (Hevea brasiliansis). We evaluated the few widely used growth functions to identify the most parsimonious and biologically reasonable model fo...No attempt has been made to date to model growth in girth of rubber tree (Hevea brasiliansis). We evaluated the few widely used growth functions to identify the most parsimonious and biologically reasonable model for describing the girth growth of young rubber trees based on an incomplete set of young age measurements. Monthly data for girth of immature trees (age 2 to 12 yearsi from two locations were sub- jected to modelling. Re-parameterized, unconstrained and constrained growth functions,of Richards (RM), Gompertz (GM) and the monomo- lecular 'model ^(MM) were fitted to data. Duration of growth was the firsf constraint introduced. In the stagel We attempted a population aver- age (PA) model to capture the trend in growth. The best PA model was fitted as a subject specific (SS) model. We used appropriate error vari- ance-covariance structure to account for correlation due to repeated measurements over time. Unconstrainecl functions underestimated the asymptotic maximum that did not reflective carrying capacity of the locations. Underestimafions were attributed to the partial set' of meas- urements made during the early growth phase of the trees. MM proved superior to RM and GM. In the randomcoefficient models, both Gf and Go appeared to be influenced by tree level effects. Inclusion of diagonal definite positive matrix removed the correlation between random effects. The results were similar at both locations. In the overall assessment MM appeared as the candidate model for studying the girth-age relationships in Hevea trees. Based on the fitted model we conclude that, in Hevea trees, growth rate is maintained at maximum value at to, then decreases until the final state at dG/dt 〉 0, resulting in yield curve with no period of accelerating growth. One physiological explanation is that photosynthetic activity in Hevea trees decreases as girth increases and constructive metabolism is larger than destructive metabolism.展开更多
The generalized Chapman-Richards model was derived from the Chapman-Richards function in which parameters h, k and m were unconstrained. Based on the structure of solutions and biological interpretations, the model co...The generalized Chapman-Richards model was derived from the Chapman-Richards function in which parameters h, k and m were unconstrained. Based on the structure of solutions and biological interpretations, the model could be classified into eight cases (three categories) at all and among them only 4 kinds of cases are suitable in forestry that represent four typical growth patterns of trees and stands. For each of 4 equations, the model properties and biological interpretations for parameters were discussed in detail. The generalized Chapman-Richards model was capable of describing a wide range of growth curves that was asymptotic or nonasymptotic, with or without inflection point. In order to illustrate the versatility of the model, it was fitted to a group of data sets concerning the DBH growth of cryptomeria plantations with 4 initial densities and the DBH and height growth of natural Korean pine tree. Comparing the generalized Chapman-Richards function and the Schnute model, it was found that the parameters and expressions of the two models were interchangeable in theory, and the fitting results were explicitly identical in empirical applications.展开更多
In this study, we induced cerebral infarction in rats by occluding the right middle cerebral artery, and tested the effects of electroacupuncture at the Baihui acupoint (DU 20). Motor and sensory function was tested...In this study, we induced cerebral infarction in rats by occluding the right middle cerebral artery, and tested the effects of electroacupuncture at the Baihui acupoint (DU 20). Motor and sensory function was tested using Garcia’s scale and motor weakness grading, and the expression of vascular endothelial growth factor in the brain was quantified using immunoblotting and immunohistochemistry. We found that scalp electroacupuncture at DU 20 significantly improved motor performance and sensory function in rats with stroke, and this was accompanied by an increased expression of vascular endothelial growth factor in the ischemic brain tissue and peri-ischemic area. In addition, Pearson correlation analysis showed that the improvements in functional recovery were correlated with the increased expression of vascular endothelial growth factor.展开更多
The Chapman-Richards Function and its two exception cases in applications were discussed and compared with the Schnute model in stand growth studies. Compared from all perspective, it was found that the Schnute model ...The Chapman-Richards Function and its two exception cases in applications were discussed and compared with the Schnute model in stand growth studies. Compared from all perspective, it was found that the Schnute model commonly used in foreitry was identical to the Chapman-Richards function. If some parameter in the Chapman-Richdrds Function was unconstraint, the function could also be very versatile to fit some exceptional growth curves, the fitted function should be identical to that the Schnute model.展开更多
Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,differe...Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates.展开更多
Phytochrome family mainly senses red and far-red light to regulate a range of developmental processes throughout the life cycle of plants. Rice phytochrome gene family is composed of three members known as PHYA, PHYB ...Phytochrome family mainly senses red and far-red light to regulate a range of developmental processes throughout the life cycle of plants. Rice phytochrome gene family is composed of three members known as PHYA, PHYB and PHYC. It has been elucidated that individual phytochromes display both unique and overlapping roles in rice photomorphogenesis by characterization of all rice phytochrome mutants including single mutants, all combinations of double mutants as well as triple mutants. Based on the published data and authors’ ongoing studies, current knowledge of rice phytochrome functions in regulating seedling de-etiolation, root gravitropic response and elongation, plant architecture, flowering time and fertility is summarized. Additionally, the important issues in the field of rice phytochromes are proposed.展开更多
The purpose of the study is to measure the "growth drag" according to the characteristic of Chinese land resource.Romer model (2001) holds that every country is inevitably affected by the "growth drag&q...The purpose of the study is to measure the "growth drag" according to the characteristic of Chinese land resource.Romer model (2001) holds that every country is inevitably affected by the "growth drag" due to the limitation of land resource.So it's of profound strategic significance to measure the "growth drag" according to the character of Chinese land resource.Modified two-level CES production function was employed,and this paper modified the hypothesis of the model.The result indicates that the limitation of Chinese land resource casts shadow over the economic development of China,and the growth rate is 0.4618% lower than that without the limitation of land resource.Through implementing the land resource protection policy along with the technology improvement and the substitute effect of other factors to the land resource,China will keep a steady and balanced economic growth.展开更多
Carbon nanotubes can carry protein into cells to induce biological effects. Amino-functionalized carbon nanotubes are soluble and biocompatible, have high reactivity and low toxicity, and can help promote nerve cell g...Carbon nanotubes can carry protein into cells to induce biological effects. Amino-functionalized carbon nanotubes are soluble and biocompatible, have high reactivity and low toxicity, and can help promote nerve cell growth. In this study, amino-functionalized ethylenediamine-treated multi-walled carbon nanotubes were used to prepare carbon nanotubes-nerve growth factor complexes by non-covalent grafting. The physicochemical properties, cytotoxicity to PC12 and chick embryo dorsal root ganglion, and biological activity of the carbon nanotubes-nerve growth factor complexes were investigated. The results showed that amino functionalization improved carbon nanotubes-nerve growth factor complex dispersibility, reduced their toxicity to PC12 cells, and promoted PC 12 cell differentiation and chick embryo dorsal root ganglion.展开更多
OBJECTIVE: To investigate the effect of brain functional recovery decoction(BFRD) on expression of vascular endothelial growth factor(VEGF) and angiopoietin-1(Ang-1) protein in rats with cerebral ischemia reperfusion ...OBJECTIVE: To investigate the effect of brain functional recovery decoction(BFRD) on expression of vascular endothelial growth factor(VEGF) and angiopoietin-1(Ang-1) protein in rats with cerebral ischemia reperfusion injury, and to explore the mechanism of action of BFRD.METHODS: Using the suture-occlusion method, a Wistar rat model of focal cerebral ischemia reperfusion was established. The rats were randomly divided into treatment group, model group, and sham operation group. The treatment group was administered BFRD. In situ hybridization was used to detect VEGF m RNA expression. Immunohistochemistry was used to observe expression of Ang-1 protein.RESULTS: VEGF mRNA expression was greater in the model group compared with the sham operation group(P < 0.05); Ang-1 protein expression was more obvious in the treatment group than the model group(P < 0.05).CONCLUSION: BFRD promoted VEGF m RNA and Ang-1 protein expression in the brains of rats with cerebral ischemia, suggesting increased angiogenesis.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金supported by the Jiangsu Science and Technology Plan Project(No.BE2022420)the Innovation and Promotion of Forestry Science and Technology Program of Jiangsu Province(No.LYKJ[2021]30)+2 种基金the Scientific Research Project of Baishanzu National Park(No.2021ZDLY01)the Ningxia key research and development plan(No.2021BEG02010)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Mining activities have caused significant land degradation globally,emphasizing the need for effective restoration.Microbial inoculants offer a promising solution for sustainable remediation by enhancing soil nutrients,enzyme activities,and microbial communities to support plant growth.However,the mechanisms by which inoculants influence soil microbes and their relationship with plant growth require further investigation.Metagenomic sequencing was employed for this study,based on a one-year greenhouse experiment,to elucidate the effects of Bacillus thuringiensis NL-11 on the microbial functions of abandoned mine soils.Our findings revealed that the application of microbial inoculants significantly enhanced the soil total carbon(TC),total sulfur(TS),organic carbon(SOC),available phosphorus(AP),ammonium(NH4+),urease,arylsulfatase,phosphatase,β-1,4-glucosidase(BG),β-1,4-N-acetylglucosaminidase(NAG).Moreover,this led to substantial improvements in plant height,as well as aboveground and belowground biomass.Microbial inoculants impacted functional gene structures without altering diversity.The normalized abundance of genes related to the degradation of carbon and nitrogen,methane metabolism,and nitrogen fixation were observed to increase,as well as the functional genes related to phosphorus cycling.Significant correlations were found between nutrient cycling gene abundance and plant biomass.Partial Least Squares Path Model analysis showed that microbial inoculants not only directly influenced plant biomass but also indirectly affected the plant biomass through C cycle modifications.This study highlights the role of microbial inoculants in promoting plant growth and soil restoration by improving soil properties and enhancing normalized abundance of nutrient cycling gene,making them essential for the recovery of abandoned mine sites.
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
基金Supported by the National Natural Science Foundation of China(Grant No.12161080)。
文摘This paper is concerned with a diffusive Ivlev-type predator-prey system with Smith growth and a protection zone. By discussing the existence and non-existence of positive solutions,we discover that the incorporation of the Smith growth function has enabled us to obtain a more precise criterion when judging the structure of bifurcation solutions, and determine a critical size for the protection zone. The results indicate that if the size of the protection zone is below the critical patch size, then the system has no positive steady state solution for excessively high intrinsic growth rates of predators. Conversely, if the size of the protection zone exceeds the critical patch size, there exists positive steady state solution regardless of how large the intrinsic growth rate of the predators is.
文摘The current investigation focuses on intertwined relationships of ecology and aquaculture for the benefit of farmers involved in fish farming practices.The study evaluated glucosinolate reduction in black,brown,and white mustard meals as fish feed ingredients for Indian Major Carps.Fish were fed with 10%mustard meal-supplemented diets in three forms:Raw(R),Anti-nutritional Rich(AR),and Anti-nutritional Lowered(AL),alongside a control group using floating feed.The three-month indoor experiment(September-November 2023)was conducted in FRP tanks with triplicate treatments.Blood analysis revealed compromised health in AR-fed carps,with reduced hemoglobin levels in rohu,catla and mrigal and elevated total leukocyte counts indicating inflammation in all the three carps studied here.Liver function was impaired in AR-fed fish,shown by increased alanine transaminase levels,highest in rohu followed by mrigal and catla.Histopathological examination of AR-fed carps liver tissue revealed necrotic spots,deformed hepatocytes,and significant vacuolation.In contrast,AL-fed fish demonstrated improved health parameters through Complete Blood Count analysis,liver function tests,and histo-pathological observations,suggesting successful reduction of anti-nutritional factors in the processed mustard meals.In near future,replacement of unprocessed seed meal with processed seed meal will lead to economic gains in fish farming.
基金financially funded by the National Natural Science Foundation of China(3186113307,31770533,31870591)the West Light Talent Program of the Chinese Academy of Sciences(xbzg-zdsys-202218).
文摘The karst forest in southwestern China is characterized by thin soil layers,numerous fissures and holes,resulting in low soil water availability and poor water retention,making it challenging for plant growth and survival.While the relationship between plant functional traits and tree growth performance has been extensively studied,the links between tree seasonal growth and drought-tolerant traits in tree species with different leaf habit remains poorly understood.This study evaluated the associations between four-year averaged rainy season stem diameter growth rate and 17 branch and leaf traits across evergreen and deciduous species in a tropical karst forest in southwest China.The cross-species variations in tree growth rates were related to plant hydraulic traits(e.g.,vessel lumen diameter,xylem vessel density,stomatal density,and stomatal size)and leaf anatomical traits(e.g.,total leaf thickness,lower/upper epidermis thickness,and spongy thickness).The growth of evergreen trees exhibited lower hydraulic efficiency but greater drought tolerance than deciduous tree,which enabled them to maintain higher persistence under low soil water availability and consequently a relatively longer growing season.In contrast,deciduous species showed no correlation between their functional traits and growth rate.The distinct water use strategies of evergreen and deciduous trees may offer a potential explanation for their co-existence in the tropical karst forests.
基金funded by National Natural Science Foundation of China(grant no.32301870 to Chen Lin)Natural Science Foundation of Jiangsu Province(grant no.BK20230568 to Chen Lin)+3 种基金the Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund(grant no.CX(24)3124 to Chen Lin)Outstanding Ph.D.Programin Yangzhou(grant no.YZLYJFJH2022YXBS147 to Chen Lin)the General Project of Basic Scientific Research to colleges and universities in Jiangsu Province(grant no.22KJB210019 toChen Lin)the Priority Academic Program Development of Jiangsu Higher Education Institutions is greatly acknowledged.
文摘Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrates in response to various stress conditions. Beyond their role in stress adaptation, certain GSTs are integral regulators of plant growth and development, contributing to a range of physiological processes. Most GST proteins exhibit dual enzymatic activities, functioning as both transferases and peroxidases, which enables their involvement in diverse cellular processes, including detoxification and stress responses. Recent advancements, particularly in X-ray crystallography, have enabled detailed structural analysis of GST proteins, significantly enhancing our understanding of their biological functions. This review offers a comprehensive overview of the classification and structural characteristics of GSTs in plants. It also highlights recent findings on their roles in plant growth and development, cell signaling, catalytic transport, and stress tolerance. Furthermore, key scientific challenges related to GSTs are discussed, focusing on their potential applications in agriculture. These insights aim to facilitate the screening of functional GST genes and support molecular breeding efforts across diverse crop species.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
文摘A tree's basal area(BA)and wood volume scale exponentially with tree diameter in species-specifc patterns.Recent observed increases in tree growth suggest these allometric relationships are shifting in response to climate change,rising CO_(2) levels,and/or changes in forest management.We analyzed 9,214 cores from nine conifer and 11 broadleaf species grown in managed mixed-species stands in the upper Midwest to quantify how well diameter(diameter at breast height(DBH))serves to predict BA growth and above-ground wood and carbon(C).These samples include many large trees.We ft mixed models to predict BA growth and above-ground biomass/C from diameter,tree height,and the BA of nearby trees while controlling for site effects.Models account for 55%–83%of the variance in log(recent growth),improving predictions over earlier models.Growth-diameter scaling exponents covary with certain leaf and stem(but not wood)functional traits,reflecting growth strategies.LogBA increment scales linearly with log(diameter)as trees grow bigger in 16/20 species and growth actually accelerates in Quercus rubra L.Three other species plateau in growth.Growth only decelerates in red pine,Pinus resinosa Ait.Growth in whole-tree,above-ground biomass,and C accelerate even more strongly with diameter(mean exponent:2.08 vs.1.30 for BA growth).Sustained BA growth and accelerating wood/C growth contradict the common assumption that tree growth declines in bigger trees.Yield tables and silvicultural guidelines should be updated to reflect these current relationships.Such revisions will favor delaying harvests in many managed stands to increase wood production and enhance ecosystem values including C fxation and storage.Further research may resolve the relative roles of thinning,climatic conditions,nitrogen inputs,and rising CO2 levels on changing patterns of tree growth.
基金supported by Scientific Research Innovation Project of Graduate Education Innovation Fund from Xinjiang(Grant No. XJGRI2014057)
文摘Objective:To discuss the effect of Glycyrrhiza uralensis(G.uralensis) Fisch polysaccharide on growth performance and immunologic function in mice in Ural City,Xinjiang and to provide important data supporting the application of Glycyrrhiza polysaccharide.Methods:A total of100 Kunming mice aged 3 weeks old were randomly divided into 5 groups with 20 mice in each group(10 were females and 10 were males).About 0.5 mL normal saline was given to the mice of control group every day and 0.5 mL G.uralensis Fisch polysaccharide was given to the mice of other groups at the concentration of 1,20,50 and 100 mg/mL respectively.The growth performance(average body weight,average daily feed intake and feed efficiency),immune organ indexes(spleen index and thymus index) and immunologic function(serum IL-2,CD4^+/CD8^+ and the activity of NK cells) of mice in each group were detected continuously.Results:The average body weight,feed efficiency,serum IL-2,CD4^+/CD8^+ and the activity of NK cells of mice were increased with the increase of administrated time after administrating G.uralensis Fisch polysaccharide and were reached up the largest level on Day 28.At the same time,each index was proportional to the given dose and was significantly higher than those of control group and reached up the largest level at the administrated dose of 100 mg/mL.After administrating G.uralensis Fisch polysaccharide,the spleen index and thymus index of mice were increased with the increase of administrated dose and the spleen index and thymus index of mice administrated with the dose of 100 mg/mL were maximum which was more than 1.51 times and 1.43 times of that in control group respectively and the comparative differences showed statistical significance(P<0.05).The average daily feed intake of mice in each group was increased with the passage of lime and at the same time,the comparison of average daily feed intake of mice in each group was not significantly different(P>0.05).Conclusions:G.uralensis Fisch polysaccharide can significantly improve the growth performance and immunologic function of mice and laid a research basis for the clinical application of G.uralensis Fisch polysaccharide.
文摘We review the biology and role of transforming growth factor beta 1 (TGF-β1) in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks (i.e., sciatic nerve, brachial plexus), which often leads to suboptimal functional recovery. Experimental studies have suggested that the reason for the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets, which is a result of the loss of the growth-supportive environment provided by the Schwann cells in the distal stump of injured nerves. Using an established chronic nerve injury and delayed repair animal model that accu- rately mimics chronic nerve injuries in humans, we summarize our key findings as well as others to better understand the pathophysiology of poor functional recovery. We demonstrated that 6 month TGF-β1 treat- ment for chronic nerve injury significantly improved Schwann cell capacity to support axonal regeneration. When combined with forskolin, the effect was additive, as evidenced by a near doubling of regenerated axons proximal to the repair site. We showed that in vivo application of TGF-β1 and forskolin directly onto chronically injured nerves reactivated chronically denervated Schwann cells, induced their proliferation, and upregulated the expression of regeneration-associated proteins. The effect of TGF-β1 and forskolin on old nerve injuries is quite impressive and the treatment regiment appears to mediate a growth-supportive milieu in the injured peripheral nerves. In summary, TGF-β1 and forskolin treatment reactivates chronical- ly denervated Schwann cells and could potentially be used to extend and prolong the regenerative responses to promote axonal regeneration.
文摘No attempt has been made to date to model growth in girth of rubber tree (Hevea brasiliansis). We evaluated the few widely used growth functions to identify the most parsimonious and biologically reasonable model for describing the girth growth of young rubber trees based on an incomplete set of young age measurements. Monthly data for girth of immature trees (age 2 to 12 yearsi from two locations were sub- jected to modelling. Re-parameterized, unconstrained and constrained growth functions,of Richards (RM), Gompertz (GM) and the monomo- lecular 'model ^(MM) were fitted to data. Duration of growth was the firsf constraint introduced. In the stagel We attempted a population aver- age (PA) model to capture the trend in growth. The best PA model was fitted as a subject specific (SS) model. We used appropriate error vari- ance-covariance structure to account for correlation due to repeated measurements over time. Unconstrainecl functions underestimated the asymptotic maximum that did not reflective carrying capacity of the locations. Underestimafions were attributed to the partial set' of meas- urements made during the early growth phase of the trees. MM proved superior to RM and GM. In the randomcoefficient models, both Gf and Go appeared to be influenced by tree level effects. Inclusion of diagonal definite positive matrix removed the correlation between random effects. The results were similar at both locations. In the overall assessment MM appeared as the candidate model for studying the girth-age relationships in Hevea trees. Based on the fitted model we conclude that, in Hevea trees, growth rate is maintained at maximum value at to, then decreases until the final state at dG/dt 〉 0, resulting in yield curve with no period of accelerating growth. One physiological explanation is that photosynthetic activity in Hevea trees decreases as girth increases and constructive metabolism is larger than destructive metabolism.
基金This research was supported by Excellent Youth Teacher Project of Ministry of Education.
文摘The generalized Chapman-Richards model was derived from the Chapman-Richards function in which parameters h, k and m were unconstrained. Based on the structure of solutions and biological interpretations, the model could be classified into eight cases (three categories) at all and among them only 4 kinds of cases are suitable in forestry that represent four typical growth patterns of trees and stands. For each of 4 equations, the model properties and biological interpretations for parameters were discussed in detail. The generalized Chapman-Richards model was capable of describing a wide range of growth curves that was asymptotic or nonasymptotic, with or without inflection point. In order to illustrate the versatility of the model, it was fitted to a group of data sets concerning the DBH growth of cryptomeria plantations with 4 initial densities and the DBH and height growth of natural Korean pine tree. Comparing the generalized Chapman-Richards function and the Schnute model, it was found that the parameters and expressions of the two models were interchangeable in theory, and the fitting results were explicitly identical in empirical applications.
基金the Incheon St. Mary’s Hospital of the Catholic University of Korea, through the Clinical Research Laboratory Foundation Program, Korea Health 21 R&D Project, No. A092058, and WCU Neurocytomics
文摘In this study, we induced cerebral infarction in rats by occluding the right middle cerebral artery, and tested the effects of electroacupuncture at the Baihui acupoint (DU 20). Motor and sensory function was tested using Garcia’s scale and motor weakness grading, and the expression of vascular endothelial growth factor in the brain was quantified using immunoblotting and immunohistochemistry. We found that scalp electroacupuncture at DU 20 significantly improved motor performance and sensory function in rats with stroke, and this was accompanied by an increased expression of vascular endothelial growth factor in the ischemic brain tissue and peri-ischemic area. In addition, Pearson correlation analysis showed that the improvements in functional recovery were correlated with the increased expression of vascular endothelial growth factor.
文摘The Chapman-Richards Function and its two exception cases in applications were discussed and compared with the Schnute model in stand growth studies. Compared from all perspective, it was found that the Schnute model commonly used in foreitry was identical to the Chapman-Richards function. If some parameter in the Chapman-Richdrds Function was unconstraint, the function could also be very versatile to fit some exceptional growth curves, the fitted function should be identical to that the Schnute model.
基金funded by the Young Academic Leaders Supporting Project in Institutions of Higher Education of Shanxi Province,China
文摘Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates.
基金supported by the grants from the Chinese National Natural Science Foundations (Grant Nos. 30870192 and 30971744)the National Major Science and Technology Project to Create New Crop Varieties Using Gene Transfer Technical (Grant No. 2009ZX08001-029B)the Open Research Program from the Key Laboratory of Crop Biology, China (Grant No. 2009KF04)
文摘Phytochrome family mainly senses red and far-red light to regulate a range of developmental processes throughout the life cycle of plants. Rice phytochrome gene family is composed of three members known as PHYA, PHYB and PHYC. It has been elucidated that individual phytochromes display both unique and overlapping roles in rice photomorphogenesis by characterization of all rice phytochrome mutants including single mutants, all combinations of double mutants as well as triple mutants. Based on the published data and authors’ ongoing studies, current knowledge of rice phytochrome functions in regulating seedling de-etiolation, root gravitropic response and elongation, plant architecture, flowering time and fertility is summarized. Additionally, the important issues in the field of rice phytochromes are proposed.
基金founded by the Excellent Young Teachers Program of Shanghai Municipal Education Commission (Grant No. B8101090039)the Project for Doctoral Research Fund of Shanghai Ocean University (Grant No.A2400080314)
文摘The purpose of the study is to measure the "growth drag" according to the characteristic of Chinese land resource.Romer model (2001) holds that every country is inevitably affected by the "growth drag" due to the limitation of land resource.So it's of profound strategic significance to measure the "growth drag" according to the character of Chinese land resource.Modified two-level CES production function was employed,and this paper modified the hypothesis of the model.The result indicates that the limitation of Chinese land resource casts shadow over the economic development of China,and the growth rate is 0.4618% lower than that without the limitation of land resource.Through implementing the land resource protection policy along with the technology improvement and the substitute effect of other factors to the land resource,China will keep a steady and balanced economic growth.
基金the National Natural Science Foundation of China,No.81160395
文摘Carbon nanotubes can carry protein into cells to induce biological effects. Amino-functionalized carbon nanotubes are soluble and biocompatible, have high reactivity and low toxicity, and can help promote nerve cell growth. In this study, amino-functionalized ethylenediamine-treated multi-walled carbon nanotubes were used to prepare carbon nanotubes-nerve growth factor complexes by non-covalent grafting. The physicochemical properties, cytotoxicity to PC12 and chick embryo dorsal root ganglion, and biological activity of the carbon nanotubes-nerve growth factor complexes were investigated. The results showed that amino functionalization improved carbon nanotubes-nerve growth factor complex dispersibility, reduced their toxicity to PC12 cells, and promoted PC 12 cell differentiation and chick embryo dorsal root ganglion.
基金International Cooperation Projects of Shaanxi Province(The Protection on Ischemia-reperfusion Rats and the influence of VEGF RNA Expression of Brain Functional Recovery Decoction,No.2012-Kw-33-02)
文摘OBJECTIVE: To investigate the effect of brain functional recovery decoction(BFRD) on expression of vascular endothelial growth factor(VEGF) and angiopoietin-1(Ang-1) protein in rats with cerebral ischemia reperfusion injury, and to explore the mechanism of action of BFRD.METHODS: Using the suture-occlusion method, a Wistar rat model of focal cerebral ischemia reperfusion was established. The rats were randomly divided into treatment group, model group, and sham operation group. The treatment group was administered BFRD. In situ hybridization was used to detect VEGF m RNA expression. Immunohistochemistry was used to observe expression of Ang-1 protein.RESULTS: VEGF mRNA expression was greater in the model group compared with the sham operation group(P < 0.05); Ang-1 protein expression was more obvious in the treatment group than the model group(P < 0.05).CONCLUSION: BFRD promoted VEGF m RNA and Ang-1 protein expression in the brains of rats with cerebral ischemia, suggesting increased angiogenesis.