Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple c...Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.展开更多
The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is propo...The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is proposed to formulate the dynamic model. Secondly, to compensate the friction in the case of servo motion, a modified LuGre model is designed to make a continuous transition be- tween a static model at a high speed and a LuGre model at a low speed to avoid instability due to dis- cretization with a finite sampling rate. To accelerate the speed of estimating time-varying parame- ters, a fast adaption law is proposed by designing an attraction domain around a rough value related to the load force. Finally, a discontinuous projection based adaptive robust controller is synthesized to effectively handle parametric uncertainties for ensuring a guaranteed robust performance. A Lya- punov stability analysis demonstrates that all signals including tracking errors have the guaranteed convergent and bounded performance. Extensive comparative simulations with sinusoidal and point- point tracks are obtained respectively in low and high speeds. The results show the effectiveness and the achievable control performance of the proposed control strategy.展开更多
In order to control the vehicle body position precisely,1/4 nonlinear mathematical model of hydro-pneumatic suspension is established,and the influence of the frictional force in a hydraulic cylinder is analyzed.The f...In order to control the vehicle body position precisely,1/4 nonlinear mathematical model of hydro-pneumatic suspension is established,and the influence of the frictional force in a hydraulic cylinder is analyzed.The friction characteristics are described based on the LuGre model when the piston of a hydraulic actuator is operated at a low speed.Due to the fact parameters of the friction model are effected by the system condition,an adaptive friction compensation(AFC)controller is designed through the Backstepping method,and a dual-observer has been implemented to estimate the friction state.The global asymptotic convergence of a closed-loop system is proven by the Lyapunov theorem.The simulation results show that the positional accuracy of the adaptive friction compensation yiedls a significant improvement in the vehicle height adjustment as compared to the PID control,demonstrating the effectiveness of the adaptive fiction compensation method in the vehicle height adjustable system of the hydro-pneumatic suspension.展开更多
Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designe...Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.展开更多
A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation...A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.展开更多
A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear cont...A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.展开更多
Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness t...Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.展开更多
LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensi...LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensive experimental observations of friction behaviors in the prestiction,some variables were abstracted to depict the rules in the prestiction regime.Based upon the knowledge of friction modeling,a novel friction model including the presliding regime,the gross sliding regime and the prestiction regime was then presented to overcome the shortcomings of the LuGre model.The reason that LuGre model cannot estimate the prestiction friction was analyzed in theory.Feasibility analysis of the proposed model in modeling the prestiction friction was also addressed.A parameter identification method for the proposed model based on multilevel coordinate search algorithm was presented.The proposed friction compensation strategy was composed of a nonlinear friction observer and a feedforward mechanism.The friction observer was designed to estimate the friction force in the presliding and the gross sliding regimes.And the friction force was estimated based on the model in the prestiction regime.The comparative trajectory tracking experiments were conducted on a simulator of inertially stabilization platforms among three control schemes:the single proportional–derivative(PD)control,the PD with LuGre model-based compensation and the PD with compensator based on the presented model.The experimental results reveal that the control scheme based on the proposed model has the best tracking performance.It reduces the peak-to-peak value(PPV)of tracking error to 0.2 mrad,which is improved almost 50%compared with the PD with LuGre model-based compensation.Compared to the single PD control,it reduces the PPV of error by 66.7%.展开更多
To thoroughly examine the complex relationships between tire and pavement vibrations,a sophisticated vehicle-pavement coupled system is proposed,incorporating a non-uniform dynamic friction force between the tire and ...To thoroughly examine the complex relationships between tire and pavement vibrations,a sophisticated vehicle-pavement coupled system is proposed,incorporating a non-uniform dynamic friction force between the tire and the pavement.According to the Timoshenko beam theory,a dynamic model of pavement structure with a finite length beam was formulated on a nonlinear Pasternak foundation.To more accurately describe the coupling relationship between the tire and the pavement,and to take into account the vibration state under vehicle-pavement interaction,the load distribution between the tire and the pavement is modeled as a dynamic non-uniform contact.Combined with the classic LuGre tire model,the adhesion between the tire and the pavement is calculated.The Galerkin truncation method is employed to transform the pavement vibration partial differential equation into a finite ordinary differential equation,and the integral expression of the nonlinear foundation beam term is derived using the product to sum formula.By using the Runge-Kutta method,the tire-road coupled system can be numerically calculated,thus determining tire adhesion.This research demonstrates that compared with tire force under the traditional static load distribution,load distribution has a significant influence on adhesion.This study offers valuable insights for pavement structure design and vehicle performance control.展开更多
The influence of pavement vibration on tire adhesion is of great significance to the structure design of vehicle and pavement.The adhesion between tire and road is the key to studying vehicle dynamics,and the precise ...The influence of pavement vibration on tire adhesion is of great significance to the structure design of vehicle and pavement.The adhesion between tire and road is the key to studying vehicle dynamics,and the precise description of tire adhesion affects the accuracy of dynamic vehicle responses.However,in most models,only road roughness is considered,and the pavement vibration caused by vehicle-road interaction is ignored.In this paper,a vehicle is simplified as a spring-mass-damper oscillator,and the vehicle-pavement system is modeled as a vehicle moving along an Euler-Bernoulli beam with finite length on a nonlinear foundation.The road roughness is considered as a sine wave,and the shear stress is ignored on the pavement.According to the contact form between tire and road,the LuGre tire model is established to calculate the tire adhesion force.The Galerkin method is used to simplify the partial differential equations of beam vibration into finite ordinary differential equations.A product-to-sum formula and a Dirac delt function are used to deal with the nonlinear term caused by the nonlinear foundation,which realizes the fast and accurate calculation of super-high dimensional nonlinear ordinary differential equations.In addition,the dynamic responses between the coupled system and the traditional uncoupled system are compared with each other.The obtained results provide an important theoretical basis for research on the influence of vehicle-road coupled vibration on tire adhesion.展开更多
A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parame...A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.展开更多
This study proposes a data-driven friction modeling and compensation method aimed at solving the problem of servo performance degradation caused by friction in rotary servo actuators.First,a data-driven friction model...This study proposes a data-driven friction modeling and compensation method aimed at solving the problem of servo performance degradation caused by friction in rotary servo actuators.First,a data-driven friction modeling method is proposed on the basis of the physics-informed neural network(PINN)and the LuGre model.The constructed friction model consists of sliding regime,static regime,and presliding regime,which extends the variables of the friction model to include velocity and position.The data-driven friction model not only retains the accuracy of the LuGre model in describing the dynamic behavior of friction at zero velocity but also improves the accuracy and convergence speed of the model through the powerful learning ability of PINN,which is verified in the two examples of constructing friction test data.Second,on the basis of the data-driven friction model,a composite compensation strategy centered on friction compensation is proposed.The friction compensator is used to compensate the internal friction of the actuator,and the extended Kalman filter is used to suppress the random disturbance to achieve the precise control of the servo actuator.Experimental validation of the proposed compensation strategy against three traditional control methods demonstrates its superiority,with average improvements of 49.5%,30.4%,and 32.7%in velocity tracking accuracy,respectively,while ensuring consistent accuracy across different positions.The proposed data-driven friction modeling and compensation method provides a new perspective and method for overcoming the effect of friction.展开更多
The friction force is an important environmental factor that influences dynamic walking.While most of the related works simply assume static friction or Coulomb friction,we use the LuGre friction,which accounts for bo...The friction force is an important environmental factor that influences dynamic walking.While most of the related works simply assume static friction or Coulomb friction,we use the LuGre friction,which accounts for both static and dynamic effects,to model the horizontal ground reaction force of passive dynamic walking.We present a detailed mathematical modeling method and perform numerical simulations using it.Furthermore,we analyze the ground surface cases of the Coulomb friction condition and static friction condition to verify the model’s generalization.We discover the required condition for the existence of the period-1 gait through investigation.Our mathematical model and theoretical analysis add to our understanding of passive dynamic walking,which helps to positively utilize the natural dynamics of the legged locomotion system in control design.展开更多
The accurate estimation of tire-pavement friction,especially under wet conditions,is critical to ensure pavement safety.For this purpose,this paper develops a modified tirepavement friction model which takes the effec...The accurate estimation of tire-pavement friction,especially under wet conditions,is critical to ensure pavement safety.For this purpose,this paper develops a modified tirepavement friction model which takes the effect of pavement texture and water film into consideration.The influence of pavement texture is quantified by a newly proposed parameter called texture influence coefficient,which is related to the real contact patch of tirepavement.The water effect is calculated from two parts,namely lubrication effect and hydrodynamic effect.Based on these two steps,a modified average lumped LuGre(ALL)model is developed.The proposed model is calibrated and verified by GripTester data collected under different vehicle velocities and water film thicknesses.The root mean square error between the calculated value of the model and the measured value is 0.023.In addition,the effects of vehicle velocity,slip rate,water film thickness,and pavement type on the friction coefficient are analyzed by numerical calculation.The results show that the friction coefficient reaches the maximum when the slip rate is in the range of[0.15,0.20].The increases in the vehicle speed and water film thickness will lead to the decrease in the friction coefficient.Besides,in thin water film(<1 millimeter)conditions,the deterioration effect of water film thickness on the friction coefficient is more remarkable.The results prove that the modified tire-pavement friction model provides a precise and reliable way to estimate the friction coefficient of pavement,which can assist the pavement management systems in risk warning and safety guarantee.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.50775200,50905156)
文摘Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.
文摘The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is proposed to formulate the dynamic model. Secondly, to compensate the friction in the case of servo motion, a modified LuGre model is designed to make a continuous transition be- tween a static model at a high speed and a LuGre model at a low speed to avoid instability due to dis- cretization with a finite sampling rate. To accelerate the speed of estimating time-varying parame- ters, a fast adaption law is proposed by designing an attraction domain around a rough value related to the load force. Finally, a discontinuous projection based adaptive robust controller is synthesized to effectively handle parametric uncertainties for ensuring a guaranteed robust performance. A Lya- punov stability analysis demonstrates that all signals including tracking errors have the guaranteed convergent and bounded performance. Extensive comparative simulations with sinusoidal and point- point tracks are obtained respectively in low and high speeds. The results show the effectiveness and the achievable control performance of the proposed control strategy.
基金Supported by the National Natural Science Foundation of China(51005018)
文摘In order to control the vehicle body position precisely,1/4 nonlinear mathematical model of hydro-pneumatic suspension is established,and the influence of the frictional force in a hydraulic cylinder is analyzed.The friction characteristics are described based on the LuGre model when the piston of a hydraulic actuator is operated at a low speed.Due to the fact parameters of the friction model are effected by the system condition,an adaptive friction compensation(AFC)controller is designed through the Backstepping method,and a dual-observer has been implemented to estimate the friction state.The global asymptotic convergence of a closed-loop system is proven by the Lyapunov theorem.The simulation results show that the positional accuracy of the adaptive friction compensation yiedls a significant improvement in the vehicle height adjustment as compared to the PID control,demonstrating the effectiveness of the adaptive fiction compensation method in the vehicle height adjustable system of the hydro-pneumatic suspension.
基金Supported by State Key Laboratory of Explosion Science and Technology(QNKT11-08)
文摘Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.
基金Project(51005251)supported by the National Natural Science Foundation of ChinaProject(2011CB706802)supported by the National Basic Research Development Program of China(973 Program)
文摘A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.
基金Project(2015BAG06B00)supported by the National Key Technology Research from Development Program of the Ministry of Science and Technology of China
文摘A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.
基金National Science Fund for Distinguished Young Scholars (50825502)
文摘Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.
基金Projects(51135009,51105371) supported by the National Natural Science Foundation of China
文摘LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensive experimental observations of friction behaviors in the prestiction,some variables were abstracted to depict the rules in the prestiction regime.Based upon the knowledge of friction modeling,a novel friction model including the presliding regime,the gross sliding regime and the prestiction regime was then presented to overcome the shortcomings of the LuGre model.The reason that LuGre model cannot estimate the prestiction friction was analyzed in theory.Feasibility analysis of the proposed model in modeling the prestiction friction was also addressed.A parameter identification method for the proposed model based on multilevel coordinate search algorithm was presented.The proposed friction compensation strategy was composed of a nonlinear friction observer and a feedforward mechanism.The friction observer was designed to estimate the friction force in the presliding and the gross sliding regimes.And the friction force was estimated based on the model in the prestiction regime.The comparative trajectory tracking experiments were conducted on a simulator of inertially stabilization platforms among three control schemes:the single proportional–derivative(PD)control,the PD with LuGre model-based compensation and the PD with compensator based on the presented model.The experimental results reveal that the control scheme based on the proposed model has the best tracking performance.It reduces the peak-to-peak value(PPV)of tracking error to 0.2 mrad,which is improved almost 50%compared with the PD with LuGre model-based compensation.Compared to the single PD control,it reduces the PPV of error by 66.7%.
基金financially supported by the National Natural Science Foundation of China(Grant No.12072204).
文摘To thoroughly examine the complex relationships between tire and pavement vibrations,a sophisticated vehicle-pavement coupled system is proposed,incorporating a non-uniform dynamic friction force between the tire and the pavement.According to the Timoshenko beam theory,a dynamic model of pavement structure with a finite length beam was formulated on a nonlinear Pasternak foundation.To more accurately describe the coupling relationship between the tire and the pavement,and to take into account the vibration state under vehicle-pavement interaction,the load distribution between the tire and the pavement is modeled as a dynamic non-uniform contact.Combined with the classic LuGre tire model,the adhesion between the tire and the pavement is calculated.The Galerkin truncation method is employed to transform the pavement vibration partial differential equation into a finite ordinary differential equation,and the integral expression of the nonlinear foundation beam term is derived using the product to sum formula.By using the Runge-Kutta method,the tire-road coupled system can be numerically calculated,thus determining tire adhesion.This research demonstrates that compared with tire force under the traditional static load distribution,load distribution has a significant influence on adhesion.This study offers valuable insights for pavement structure design and vehicle performance control.
基金supported by the National Natural Science Foundation of China(Nos.12072204,11972238)the Natural Science Foundation of Hebei Province of China(No.A2020210039)。
文摘The influence of pavement vibration on tire adhesion is of great significance to the structure design of vehicle and pavement.The adhesion between tire and road is the key to studying vehicle dynamics,and the precise description of tire adhesion affects the accuracy of dynamic vehicle responses.However,in most models,only road roughness is considered,and the pavement vibration caused by vehicle-road interaction is ignored.In this paper,a vehicle is simplified as a spring-mass-damper oscillator,and the vehicle-pavement system is modeled as a vehicle moving along an Euler-Bernoulli beam with finite length on a nonlinear foundation.The road roughness is considered as a sine wave,and the shear stress is ignored on the pavement.According to the contact form between tire and road,the LuGre tire model is established to calculate the tire adhesion force.The Galerkin method is used to simplify the partial differential equations of beam vibration into finite ordinary differential equations.A product-to-sum formula and a Dirac delt function are used to deal with the nonlinear term caused by the nonlinear foundation,which realizes the fast and accurate calculation of super-high dimensional nonlinear ordinary differential equations.In addition,the dynamic responses between the coupled system and the traditional uncoupled system are compared with each other.The obtained results provide an important theoretical basis for research on the influence of vehicle-road coupled vibration on tire adhesion.
基金supported by Ministry of Knowledge and Economy,Koreathe ITRC(Information Technology Research Center)support program(ⅡTA-2009-C1090-0902-0004)
文摘A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.
基金supported by the National Natural Science Foundation of China(Grant Nos.52305079 and U19A2072).
文摘This study proposes a data-driven friction modeling and compensation method aimed at solving the problem of servo performance degradation caused by friction in rotary servo actuators.First,a data-driven friction modeling method is proposed on the basis of the physics-informed neural network(PINN)and the LuGre model.The constructed friction model consists of sliding regime,static regime,and presliding regime,which extends the variables of the friction model to include velocity and position.The data-driven friction model not only retains the accuracy of the LuGre model in describing the dynamic behavior of friction at zero velocity but also improves the accuracy and convergence speed of the model through the powerful learning ability of PINN,which is verified in the two examples of constructing friction test data.Second,on the basis of the data-driven friction model,a composite compensation strategy centered on friction compensation is proposed.The friction compensator is used to compensate the internal friction of the actuator,and the extended Kalman filter is used to suppress the random disturbance to achieve the precise control of the servo actuator.Experimental validation of the proposed compensation strategy against three traditional control methods demonstrates its superiority,with average improvements of 49.5%,30.4%,and 32.7%in velocity tracking accuracy,respectively,while ensuring consistent accuracy across different positions.The proposed data-driven friction modeling and compensation method provides a new perspective and method for overcoming the effect of friction.
基金supported by Fundamental Research Funds for the Central Universities,China(buctrc202215).
文摘The friction force is an important environmental factor that influences dynamic walking.While most of the related works simply assume static friction or Coulomb friction,we use the LuGre friction,which accounts for both static and dynamic effects,to model the horizontal ground reaction force of passive dynamic walking.We present a detailed mathematical modeling method and perform numerical simulations using it.Furthermore,we analyze the ground surface cases of the Coulomb friction condition and static friction condition to verify the model’s generalization.We discover the required condition for the existence of the period-1 gait through investigation.Our mathematical model and theoretical analysis add to our understanding of passive dynamic walking,which helps to positively utilize the natural dynamics of the legged locomotion system in control design.
基金supported by the Ministry of Transport of China(No.2020-ZD3-025)the Shanghai Science and Technology Commission of China(No.22XD1433300).
文摘The accurate estimation of tire-pavement friction,especially under wet conditions,is critical to ensure pavement safety.For this purpose,this paper develops a modified tirepavement friction model which takes the effect of pavement texture and water film into consideration.The influence of pavement texture is quantified by a newly proposed parameter called texture influence coefficient,which is related to the real contact patch of tirepavement.The water effect is calculated from two parts,namely lubrication effect and hydrodynamic effect.Based on these two steps,a modified average lumped LuGre(ALL)model is developed.The proposed model is calibrated and verified by GripTester data collected under different vehicle velocities and water film thicknesses.The root mean square error between the calculated value of the model and the measured value is 0.023.In addition,the effects of vehicle velocity,slip rate,water film thickness,and pavement type on the friction coefficient are analyzed by numerical calculation.The results show that the friction coefficient reaches the maximum when the slip rate is in the range of[0.15,0.20].The increases in the vehicle speed and water film thickness will lead to the decrease in the friction coefficient.Besides,in thin water film(<1 millimeter)conditions,the deterioration effect of water film thickness on the friction coefficient is more remarkable.The results prove that the modified tire-pavement friction model provides a precise and reliable way to estimate the friction coefficient of pavement,which can assist the pavement management systems in risk warning and safety guarantee.