A transmission bottleneck occurs during each human immunodeficiency virus(HIV) transmission event, which allows only a few viruses to establish new infection. However, the genetic characteristics of the transmitted vi...A transmission bottleneck occurs during each human immunodeficiency virus(HIV) transmission event, which allows only a few viruses to establish new infection. However, the genetic characteristics of the transmitted viruses that are preferentially selected have not been fully elucidated. Here, we analyzed amino acids changes in the envelope protein during simian immunodeficiency virus(SIV)/HIV deep transmission history and current HIV evolution within the last 15–20 years. Our results confirmed that the V1V2 region of gp120 protein, particularly V1, was preferentially selected. A shorter V1 region was preferred during transmission history, while during epidemic, HIV may evolve to an expanded V1 region gradually and thus escape immune recognition. We then constructed different HIV-1 V1 mutants using different HIV-1 subtypes to elucidate the role of the V1 region in envelope function. We found that the V1 region, although highly variable, was indispensable for virus entry and infection, probably because V1 deletion mutants exhibited impaired processing of gp160 into mature gp120 and gp41. Additionally, the V1 region affected Env incorporation. These results indicated that the V1 region played a critical role in HIV transmission and infection.展开更多
Thread-level speculation becomes more attractive for the exploitation of thread-level parallelism from irregular sequential applications. But it is common for speculative threads to fail to reach the expected parallel...Thread-level speculation becomes more attractive for the exploitation of thread-level parallelism from irregular sequential applications. But it is common for speculative threads to fail to reach the expected parallel performance. The reason is that the performance of speculative threads is extremely complicated by the fact that it not only suffers from the imprecision of compiler-directed performance estimation due to ambiguous control and data dependences, but also depends on the underlying hardware configuration and program behaviors. Thus, this paper proposes a statically greedy and dynamically adaptive approach for loop-level speculation to dynamically determine the best loop level at runtime. It relies on the compiler to select and optimize all loop candidates greedily, which are then proceeded on the cost-benefit analysis of different loop nesting levels for the determination of the order of loop speculation. Under the runtime loop execution prediction, we dynamically schedule and update the order of loop speculation, and ensure the best loop level to be always parallelized. Two different policies are also examined to maximize overall performance. Compared with traditional static loop selection techniques, our approach (:an achieve comparable or better performance.展开更多
基金supported by the International Science & Technology Cooperation Program of China (2011DFA31030)Deutsche Forschungsgemeinschaft (Transregio TRR60),National Natural Science Foundation of China (No.81461130019)
文摘A transmission bottleneck occurs during each human immunodeficiency virus(HIV) transmission event, which allows only a few viruses to establish new infection. However, the genetic characteristics of the transmitted viruses that are preferentially selected have not been fully elucidated. Here, we analyzed amino acids changes in the envelope protein during simian immunodeficiency virus(SIV)/HIV deep transmission history and current HIV evolution within the last 15–20 years. Our results confirmed that the V1V2 region of gp120 protein, particularly V1, was preferentially selected. A shorter V1 region was preferred during transmission history, while during epidemic, HIV may evolve to an expanded V1 region gradually and thus escape immune recognition. We then constructed different HIV-1 V1 mutants using different HIV-1 subtypes to elucidate the role of the V1 region in envelope function. We found that the V1 region, although highly variable, was indispensable for virus entry and infection, probably because V1 deletion mutants exhibited impaired processing of gp160 into mature gp120 and gp41. Additionally, the V1 region affected Env incorporation. These results indicated that the V1 region played a critical role in HIV transmission and infection.
基金supported by the National Natural Science Foundation of China under Grant No.61173040the Doctoral Fund of Ministry of Education of China under Grant No.20130201110012
文摘Thread-level speculation becomes more attractive for the exploitation of thread-level parallelism from irregular sequential applications. But it is common for speculative threads to fail to reach the expected parallel performance. The reason is that the performance of speculative threads is extremely complicated by the fact that it not only suffers from the imprecision of compiler-directed performance estimation due to ambiguous control and data dependences, but also depends on the underlying hardware configuration and program behaviors. Thus, this paper proposes a statically greedy and dynamically adaptive approach for loop-level speculation to dynamically determine the best loop level at runtime. It relies on the compiler to select and optimize all loop candidates greedily, which are then proceeded on the cost-benefit analysis of different loop nesting levels for the determination of the order of loop speculation. Under the runtime loop execution prediction, we dynamically schedule and update the order of loop speculation, and ensure the best loop level to be always parallelized. Two different policies are also examined to maximize overall performance. Compared with traditional static loop selection techniques, our approach (:an achieve comparable or better performance.