期刊文献+
共找到1,835篇文章
< 1 2 92 >
每页显示 20 50 100
Novel Fractal-Based Features for Low-Power Appliances in Non-Intrusive Load Monitoring
1
作者 Anam Mughees Muhammad Kamran 《Computers, Materials & Continua》 SCIE EI 2024年第7期507-526,共20页
Non-intrusive load monitoring is a method that disaggregates the overall energy consumption of a building to estimate the electric power usage and operating status of each appliance individually.Prior studies have mos... Non-intrusive load monitoring is a method that disaggregates the overall energy consumption of a building to estimate the electric power usage and operating status of each appliance individually.Prior studies have mostly concentrated on the identification of high-power appliances like HVAC systems while overlooking the existence of low-power appliances.Low-power consumer appliances have comparable power consumption patterns,which can complicate the detection task and can be mistaken as noise.This research tackles the problem of classification of low-power appliances and uses turn-on current transients to extract novel features and develop unique appliance signatures.A hybrid feature extraction method based on mono-fractal and multi-fractal analysis is proposed for identifying low-power appliances.Fractal dimension,Hurst exponent,multifractal spectrum and the Hölder exponents of switching current transient signals are extracted to develop various‘turn-on’appliance signatures for classification.Four classifiers,i.e.,deep neural network,support vector machine,decision trees,and K-nearest neighbours have been optimized using Bayesian optimization and trained using the extracted features.The simulated results showed that the proposed method consistently outperforms state-of-the-art feature extraction methods across all optimized classifiers,achieving an accuracy of up to 96%in classifying low-power appliances. 展开更多
关键词 Nonintrusive load monitoring multi-fractal analysis appliance classification switching transients
在线阅读 下载PDF
Event-Driven Non-Intrusive Load Monitoring Algorithm Based on Targeted Mining Multidimensional Load Characteristics
2
作者 Gang Xie Hongpeng Wang 《China Communications》 SCIE CSCD 2023年第5期40-56,共17页
Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researche... Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researches have tried their best to extract a wide variety of load features based on transient or steady state of electrical appliances,it is still very difficult for their algorithm to model the load decomposition problem of different electrical appliance types in a targeted manner to jointly mine their proposed features.This paper presents a very effective event-driven NILM solution,which aims to separately model different appliance types to mine the unique characteristics of appliances from multi-dimensional features,so that all electrical appliances can achieve the best classification performance.First,we convert the multi-classification problem into a serial multiple binary classification problem through a pre-sort model to simplify the original problem.Then,ConTrastive Loss K-Nearest Neighbour(CTLKNN)model with trainable weights is proposed to targeted mine appliance load characteristics.The simulation results show the effectiveness and stability of the proposed algorithm.Compared with existing algorithms,the proposed algorithm has improved the identification performance of all electrical appliance types. 展开更多
关键词 non-intrusive load monitoring learning to ranking smart grid electrical characteristics
在线阅读 下载PDF
Exploring CNN Model with Inrush Current Pattern for Non-Intrusive Load Monitoring
3
作者 Sarayut Yaemprayoon Jakkree Srinonchat 《Computers, Materials & Continua》 SCIE EI 2022年第11期3667-3684,共18页
Non-Intrusive Load Monitoring(NILM)has gradually become a research focus in recent years to measure the power consumption in households for energy conservation.Most of the existing algorithms on NILM models independen... Non-Intrusive Load Monitoring(NILM)has gradually become a research focus in recent years to measure the power consumption in households for energy conservation.Most of the existing algorithms on NILM models independently measure when the total current load of appliances occurs,and NILM usually undergoes the problem of signatures of the appliance.This paper presents a distingue NILM design to measure and classify the appliances by investigating the inrush current pattern when the alliances begin.The proposed method is implemented while the five appliances operate simultaneously.The high sampling rate of field-programmable gate array(FPGA)is used to sample the inrush current,and then the current is converted to be image patterns using the kurtogram technique.These images are arranged to be four groups of data set depending on the number of appliances operating simultaneously.Furthermore,the five proposed modifications convolutional neural networks(CNN),which is based on very deep convolutional networks(VGGNet),are designed by adjusting the size to decrease the training time and increase faster operation.The proposed CNNs are then implement as a classification model to compare with the previous models.The F1 score and Recall are used to measure the accuracy classification.The results showed that the proposed system could be achieved at 99.06 accuracy classification. 展开更多
关键词 Non-instructive load monitoring kurtogram image convolutional neural network deep learning
在线阅读 下载PDF
An unsupervised non-intrusive load monitoring method for HVAC systems of office buildings based on MSTL
4
作者 Lihong Su Wenjie Gang +2 位作者 Ying Zhang Shukun Dong Zhengkai Tu 《Building Simulation》 2025年第7期1641-1657,共17页
Heating,ventilation,and air conditioning(HVAC)systems constitute a significant portion of the office building load and are important flexibility resources.However,the HVAC loads are often inaccessible to the utility o... Heating,ventilation,and air conditioning(HVAC)systems constitute a significant portion of the office building load and are important flexibility resources.However,the HVAC loads are often inaccessible to the utility or load aggregators who only have total load data.Most existing studies require subloads for supervised disaggregation or prior knowledge for unsupervised disaggregation,but such information is hard to obtain.It is necessary to develop an effective,completely unsupervised non-intrusive monitoring method to obtain the HVAC load data.In this study,a multiple seasonal-trend decomposition using the LOESS(MSTL)method is proposed to disaggregate the HVAC load from the total metered electricity data of office buildings.The effects of periodic types(daily,weekly,monthly,etc.),periodic sequences,and parallel/serial structures are analyzed.The proposed method is verified based on the historical electricity data of ten buildings.The results show that the proposed MSTL can accurately disaggregate the HVAC load with a coefficient of variation of the root mean square error(CVRMSE)of 10.94%,a normalized root mean squared error(NRMSE)of 2.1%,and a weighted absolute percentage error(WAPE)of 8.52%.Compared to single-cycle STL,the proposed method can significantly improve load disaggregation performance,with a maximum reduction of 16.36%in CVRMSE,5.3%in NRMSE,and 12.91%in WAPE.Backward-chain-based MSTL is recommended with higher accuracy and robustness.The proposed method provides an effective solution for utilities or load aggregators to improve demand response management and grid stability. 展开更多
关键词 demand response non-intrusive load monitoring load disaggregation unsupervised method STL HVAC
原文传递
A novel non-intrusive load monitoring technique using semi-supervised deep learning framework for smart grid 被引量:6
5
作者 Mohammad Kaosain Akbar Manar Amayri Nizar Bouguila 《Building Simulation》 SCIE EI CSCD 2024年第3期441-457,共17页
Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial ... Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial unit.NILM plays a pivotal role in modernizing building energy management by disaggregating total energy consumption into individual appliance-level insights.This enables informed decision-making,energy optimization,and cost reduction.However,NILM encounters substantial challenges like signal noise,data availability,and data privacy concerns,necessitating advanced algorithms and robust methodologies to ensure accurate and secure energy disaggregation in real-world scenarios.Deep learning techniques have recently shown some promising results in NILM research,but training these neural networks requires significant labeled data.Obtaining initial sets of labeled data for the research by installing smart meters at the end of consumers’appliances is laborious and expensive and exposes users to severe privacy risks.It is also important to mention that most NILM research uses empirical observations instead of proper mathematical approaches to obtain the threshold value for determining appliance operation states(On/Off)from their respective energy consumption value.This paper proposes a novel semi-supervised multilabel deep learning technique based on temporal convolutional network(TCN)and long short-term memory(LSTM)for classifying appliance operation states from labeled and unlabeled data.The two thresholding techniques,namely Middle-Point Thresholding and Variance-Sensitive Thresholding,which are needed to derive the threshold values for determining appliance operation states,are also compared thoroughly.The superiority of the proposed model,along with finding the appliance states through the Middle-Point Thresholding method,is demonstrated through 15%improved overall improved F1micro score and almost 26%improved Hamming loss,F1 and Specificity score for the performance of individual appliance when compared to the benchmarking techniques that also used semi-supervised learning approach. 展开更多
关键词 semi-supervised learning non-intrusive load monitoring middle-point thresholding deep learning TCN LSTM
原文传递
Non-intrusive Load Monitoring Based on Graph Total Variation for Residential Appliances 被引量:1
6
作者 Xiaoyang Ma Diwen Zheng +3 位作者 Xiaoyong Deng Ying Wang Dawei Deng Wei Li 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期947-957,共11页
Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on... Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on the mining of unique load characteristics,few studies have extensively considered the high computational burden and sample training.Based on lowfrequency sampling data,a non-intrusive load monitoring algorithm utilizing the graph total variation(GTV)is proposed in this study.The algorithm can effectively depict the load state without the need for prior training.First,the combined Kmeans clustering algorithm and graph signals are used to build concise and accurate graph structures as load models.The GTV representing the internal structure of the graph signal is introduced as the optimization model and solved using the augmented Lagrangian iterative algorithm.The introduction of the difference operator reduces the computing cost and addresses the inaccurate reconstruction of the graph signal.With low-frequency sampling data,the algorithm only requires a little prior data and no training,thereby reducing the computing cost.Experiments conducted using the reference energy disaggregation dataset and almanac of minutely power dataset demonstrated the stable superiority of the algorithm and its low computational burden. 展开更多
关键词 Non-intrusive load monitoring graph total variation augmented Lagrangian function smart grid
原文传递
Energy Disaggregation of Industrial Machinery Utilizing Artificial Neural Networks for Non-intrusive Load Monitoring
7
作者 Philipp Pelger Johannes Steinleitner Alexander Sauer 《Energy and AI》 EI 2024年第3期342-356,共15页
This paper explores the application of non-intrusive load monitoring techniques in the industrial sector for disaggregating the energy consumption of machinery in manufacturing processes. With an increasing focus on e... This paper explores the application of non-intrusive load monitoring techniques in the industrial sector for disaggregating the energy consumption of machinery in manufacturing processes. With an increasing focus on energy efficiency and decarbonization measures, achieving energy transparency in production becomes crucial. Utilizing non-intrusive load monitoring, energy data analysis and processing can provide valuable insights for informed decision-making on energy efficiency improvements and emission reductions. While non-intrusive load monitoring has been extensively researched in the building and residential sectors, the application in the industrial manufacturing domain needs to be further explored. This paper addresses this research gap by adapting established non-intrusive load monitoring techniques to an industrial dataset. By employing artificial neural networks for energy disaggregation, the determination of energy consumption of industrial machinery is made possible. Therefore, a generally applicable cross-energy carrier method to disaggregate the energy consumption of machinery in manufacturing processes is developed using a design science research approach and validated through a practical case study utilizing a compressed air demonstrator. The results show that the utilization of artificial neural networks is well-suited for energy disaggregation of industrial data, effectively identifying on and off states, multi-level states and continuously variable states. Non-intrusive load monitoring should be further considered in the research of emerging artificial intelligence technologies in energy consumption evaluation. It can be a viable alternative for intrusive load monitoring and is a prerequisite to installing energy meters for every machine. 展开更多
关键词 Non-intrusive load monitoring Energy transparency Energy consumption evaluation Industrial manufacturing Artificial neural networks
在线阅读 下载PDF
Event Detection Based on Robust Random Cut Forest Algorithm for Non-intrusive Load Monitoring
8
作者 Lingxia Lu Ju-Song Kang Miao Yu 《Journal of Modern Power Systems and Clean Energy》 CSCD 2024年第6期2019-2029,共11页
Non-intrusive load monitoring(NILM) can provide appliance-level power consumption information without deploying submeters for each load, in which load event detection is one of the crucial steps. However, the existing... Non-intrusive load monitoring(NILM) can provide appliance-level power consumption information without deploying submeters for each load, in which load event detection is one of the crucial steps. However, the existing event detection methods do not efficiently detect both the starting time of an event(STE) and the ending time of an event(ETE), and their adaptability to scenarios with different sampling rates is limited. To address these problems, in this paper, an event detection method based on robust random cut forest(RRCF) algorithm, which is an unsupervised learning method for detecting anomalous data points within a dataset, is proposed. First, the meanpooling preprocessing is applied to the aggregated load power series with a high sampling rate to minimize fluctuations. Then, the power differential series is obtained, and the anomaly score of each data point is calculated using the RRCF algorithm for preliminary detection. If an event has been preliminarily detected, misidentification caused by fluctuation will be further eliminated by using an adaptive power difference threshold approach. Finally, linear fitting is used to finely and accurately adjust the STE and ETE. The proposed method does not require any pretraining of the detection model and has been validated with both the BLUED dataset(with high and low sampling rates) and the REDD dataset(with low sampling rate). The experimental results demonstrate that the proposed method not only meets real-time requirements, but also exhibits strong adaptability across multiple scenarios. The precision is greater than 92% in distinct sampling rate scenarios, and the F1 score of phase B on the BLUED dataset reaches 94% in the scenario with a high sampling rate. These results indicate that the proposed method outperforms other state-of-the-art methods. 展开更多
关键词 Non-intrusive load monitoring event detection robust random cut forest adaptive threshold
原文传递
Online Fault Monitoring of On-Load Tap-Changer Based on Voiceprint Detection 被引量:1
9
作者 Kitwa Henock Bondo 《Journal of Power and Energy Engineering》 2024年第3期48-59,共12页
The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing maj... The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies. 展开更多
关键词 Online Fault monitoring OLTC On-load Tap Change Voiceprint Detection
在线阅读 下载PDF
A systematic approach to ON-OFF event detection and clustering analysis of non-intrusive appliance load monitoring 被引量:8
10
作者 Chuan Choong YANG Chit Siang SOH Vooi Voon YAP 《Frontiers in Energy》 SCIE CSCD 2015年第2期231-237,共7页
The aim of non-intrusive appliance load monitoring (NIALM) is to disaggregate the energy consumption of individual electrical appliances from total power consumption utilizing non-intrusive methods. In this paper, a... The aim of non-intrusive appliance load monitoring (NIALM) is to disaggregate the energy consumption of individual electrical appliances from total power consumption utilizing non-intrusive methods. In this paper, a systematic approach to 0N-0FF event detection and clustering analysis for NIALM were presented. From the aggregate power consumption data set, the data are passed through median filtering to reduce noise and prepared for the event detection algorithm. The event detection algorithm is to determine the switching of ON and OFF status of electrical appliances. The goodness- of-fit (GOF) methodology is the event detection algorithm implemented. After event detection, the events detected were paired into ON-0FF pairing appliances. The results from the ON-OFF pairing algorithm were further clustered in groups utilizing the K-means clustering analysis. The K- means clustering were implemented as an unsupervised learning methodology for the clustering analysis. The novelty of this paper is the determination of the time duration an electrical appliance is turned ON through combination of event detection, ON-OFF pairing and K- means clustering. The results of the algorithm implemen- tation were discussed and ideas on future work were also proposed. 展开更多
关键词 non-intrusive appliance load monitoring event detection goodness-of-fit (GOF) K-means clustering ON-OFF pairing
原文传递
Comparative Evaluation of Machine Learning Models and Input Feature Space for Non-intrusive Load Monitoring 被引量:6
11
作者 Attique Ur Rehman Tek Tjing Lie +1 位作者 Brice Valles Shafiqur Rahman Tito 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第5期1161-1171,共11页
Recent advancement in computational capabilities has accelerated the research and development of non-intrusive load disaggregation.Non-intrusive load monitoring(NILM)offers many promising applications in the context o... Recent advancement in computational capabilities has accelerated the research and development of non-intrusive load disaggregation.Non-intrusive load monitoring(NILM)offers many promising applications in the context of energy efficiency and conservation.Load classification is a key component of NILM that relies on different artificial intelligence techniques,e.g.,machine learning.This study employs different machine learning models for load classification and presents a comprehensive performance evaluation of the employed models along with their comparative analysis.Moreover,this study also analyzes the role of input feature space dimensionality in the context of classification performance.For the above purposes,an event-based NILM methodology is presented and comprehensive digital simulation studies are carried out on a low sampling real-world electricity load acquired from four different households.Based on the presented analysis,it is concluded that the presented methodology yields promising results and the employed machine learning models generalize well for the invisible diverse testing data.The multi-layer perceptron learning model based on the neural network approach emerges as the most promising classifier.Furthermore,it is also noted that it significantly facilitates the classification performance by reducing the input feature space dimensionality. 展开更多
关键词 Machine learning model load feature non-intrusive load monitoring(NILM) comparative evaluation
原文传递
Training Load Monitoring Algorithms on Highly Sub-Metered Home Electricity Consumption Data 被引量:3
12
作者 Mario Berges Ethan Goldman +1 位作者 H. Scott Matthews Lucio Soibelman 《Tsinghua Science and Technology》 SCIE EI CAS 2008年第S1期406-411,共6页
The growing interest in energy-efficient buildings is driving changes in investment, design, and occupant behavior. To better focus cost and resource conservation efforts, electricity consumption feedback can be used ... The growing interest in energy-efficient buildings is driving changes in investment, design, and occupant behavior. To better focus cost and resource conservation efforts, electricity consumption feedback can be used to provide motivation, guidance, and verification. Disaggregating by end-use helps both consumers and producers to identify targets for conservation. While hardware-based sub-metering is costly and labor-intensive, non-intrusive load monitoring (NILM) is capable of gathering detailed energy-use data with minimal equipment cost and installation time. However, variations in measurements between metering devices complicate the process of compiling the necessary appliance profiles. Future work involves the devel-opment of NILM algorithms using sensor fusion and detailed appliance-level data gathered from a highly-sensed house currently being constructed near Pittsburgh, Pennsylvania. 展开更多
关键词 electricity metering FEEDBACK energy conservation non-intrusive load monitoring
原文传递
Analysis of Dynamic Appliance Flexibility Considering User Behavior via Non-intrusive Load Monitoring and Deep User Modeling 被引量:4
13
作者 Shaopeng Zhai Huan Zhou +1 位作者 Zhihua Wang Guangyu He 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第1期41-51,共11页
The research on non-intrusive load monitoring(NILM)and the growing deployment of home energy manage-ment system(HEMS)have made it possible for households to have a detailed understanding of their power usage and to ma... The research on non-intrusive load monitoring(NILM)and the growing deployment of home energy manage-ment system(HEMS)have made it possible for households to have a detailed understanding of their power usage and to make appliances participate in demand response(DR)programs.Appliance flexibility analysis helps the HEMS dispatching appli-ances to participate in DR programs without violating user’s comfort level.In this paper,a dynamic appliance flexibility analysis approach using the smart meter data is presented.In the training phase,the smart meter data is preprocessed by NILM to obtain user’s appliances usage behaviors,which is used to train the user model.During operation,the NILM is used to infer recent appliances usage behaviors,and then the user model predicts user’s appliances usage behaviors in the DR period considering long-term behaviors dependences,correlations between appliances and temporal information.The flexibility of each appliance is calculated based on the appliance characteristics as well as the predicted user’s appliances usage behaviors caused by the control of the appliance.The HEMS can choose the appliance with high flexibility to participate in the DR programs.The case study demonstrates the performance of the user model and illustrates how the appliance flexibility analysis is performed using a real-world case. 展开更多
关键词 Appliance flexibility demandresponse home energy management system non-intrusive load monitoring user behavior
原文传递
Unsupervised Learning for Non-intrusive Load Monitoring in Smart Grid Based on Spiking Deep Neural Network 被引量:3
14
作者 Zejian Zhou Yingmeng Xiang +2 位作者 Hao Xu Yishen Wang Di Shi 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第3期606-616,共11页
This paper investigates the intelligent load monitoring problem with applications to practical energy management scenarios in smart grids.As one of the critical components for paving the way to smart grids’success,an... This paper investigates the intelligent load monitoring problem with applications to practical energy management scenarios in smart grids.As one of the critical components for paving the way to smart grids’success,an intelligent and feasible non-intrusive load monitoring(NILM)algorithm is urgently needed.However,most recent researches on NILM have not dealt with practical problems when applied to power grid,i.e.,①limited communication for slow-change systems;②requirement of low-cost hardware at the users’side;and③inconvenience to adapt to new households.Therefore,a novel NILM algorithm based on biology-inspired spiking neural network(SNN)has been developed to overcome the existing challenges.To provide intelligence in NILM,the developed SNN features an unsupervised learning rule,i.e.,spike-time dependent plasticity(STDP),which only requires the user to label one instance for each appliance while adapting to a new household.To upgrade the feasibility in NILM,the designed spiking neurons mimic the mechanism of human brain neurons that can be constructed by a resistor-capacitor(RC)circuit.In addition,a distributed computing system has been designed that divides the SNN into two parts,i.e.,smart outlets and local servers.Since the information flows as sparse binary vectors among spiking neurons in the developed SNN-based NILM,the high-frequency data can be easily compressed as the spike times,and are sent to the local server with limited communication capability,whereas it is unable to handle the traditional NILM.Finally,a series of experiments are conducted using a benchmark public dataset.Meanwhile,the effectiveness of developed SNN-based NILM can be demonstrated through comparisons with other emerging NILM algorithms such as the convolutional neural networks. 展开更多
关键词 Non-intrusive load monitoring(NILM) spiking neural network(SNN) smart grid unsupervised machine learning
原文传递
Non-invasive load-shed authentication model for demand response applications assisted by event-based non-intrusive load monitoring 被引量:1
15
作者 Attique Ur Rehman Tek Tjing Lie +1 位作者 Brice Valls Shafiqur Rahman Tito 《Energy and AI》 2021年第1期180-191,共12页
With today’s growth of prosumers and renewable energy resources,it is inevitable to incorporate the demand-side approaches for reliable and sustainable grid operation.In this context,demand response is a promising te... With today’s growth of prosumers and renewable energy resources,it is inevitable to incorporate the demand-side approaches for reliable and sustainable grid operation.In this context,demand response is a promising technique facilitating the consumers to play a substantial role in the energy market by altering their energy consumption patterns in times of peak demand or other critical contingencies.However,effective demand response deployment faces numerous challenges including trust deficit among the concerned stakeholders.This paper addresses the mentioned issue by proposing a non-invasive load-shed authentication model for demand response applications,assisted by an improved event-based non-intrusive load monitoring approach.For the said purposes,an improved event detection algorithm and machine learning model:support vector machine with a combination of genetic algorithm and GridSearchCV,is presented.This paper also presents a comprehensive real-world case study to validate the effectiveness of the proposed model in a real-life scenario.In the given context,all the simulations are carried out on low sampling real-world load measurements:Pecan Street-Dataport,where electric vehicle and air conditioning are employed as potential load elements for evaluation purposes.Based on the presented case study and analysis of the results,it is established that the presented improved event-based non-intrusive load monitoring approach yields promising performance in the context of multi-class classification.Moreover,it is also concluded that the proposed low sampling event-based non-intrusive load monitoring assisted non-invasive load-shed authentication model is a viable and promising solution for the effective implementation of demand response applications. 展开更多
关键词 Non-Intrusive load monitoring load-Shed Authentication Demand Response Machine Learning Model Genetic Algorithm Energy Efficiency
在线阅读 下载PDF
Methodology for the disaggregation and forecast of demand flexibility in large consumers with the application of non-intrusive load monitoring techniques 被引量:1
16
作者 Marco Toledo-Orozco C.Celi +3 位作者 F.Guartan Arturo Peralta Carlos Alvarez-Bel D.Morales 《Energy and AI》 2023年第3期88-103,共16页
Technological advances,innovation and the new industry 4.0 paradigm guide Distribution System Operators towards a competitive market that requires the articulation of flexible demand response systems.The lack of measu... Technological advances,innovation and the new industry 4.0 paradigm guide Distribution System Operators towards a competitive market that requires the articulation of flexible demand response systems.The lack of measurement and standardization systems in the industry process chain in developing countries prevents the penetration of demand management models,generating inefficiency in the analysis and processing of informa-tion to validate the flexibility potential that large consumers can contribute to the network operator.In this sense,the research uses as input variables the energy and power of the load profile provided by the utility energy meter to obtain the disaggregated forecast in quarter-hour intervals in 4-time windows validated through metrics and its results evaluated by the RMS error to get the total error generated by the methodology with the appli-cation of Machine Learning and Big Data techniques in the Python computational tool through Combinatorial Disaggregation Optimization and Factorial Hidden Markov models. 展开更多
关键词 Big data Combinatorial optimization Factorial hidden Markov model Machine learning Non-intrusive load monitoring Time of use tariffs
在线阅读 下载PDF
Development of All-Weather and Real-Time Bottom-Mounted Monitor of Bed Load Quantity
17
作者 窦希萍 左其华 +1 位作者 应强 黄海龙 《China Ocean Engineering》 SCIE EI CSCD 2014年第6期807-814,共8页
Quantity of bed load is an important physical parameter in sediment transport research. Aiming at the difficulties in the bed load measurement, this paper develops a bottom-mounted monitor to measure the bed load tran... Quantity of bed load is an important physical parameter in sediment transport research. Aiming at the difficulties in the bed load measurement, this paper develops a bottom-mounted monitor to measure the bed load transport rate by adopting the sedimentation pit method and resolving such key problems as weighing and desilting, which can achieve long-time, all-weather and real-time telemeasurement of the bed load transport rate of plain rivers, estuaries and coasts. Both laboratory and field tests show that this monitor is reasonable in design, stable in properties and convenient in measurement, and it can be used to monitor the bed load transport rate in practical projects. 展开更多
关键词 quantity of bed load bed load rate sediment transport real-time monitoring measuring apparatus
在线阅读 下载PDF
基于彩色V-Ⅰ轨迹特征和边缘机器学习非侵入式负荷识别方法
18
作者 陆玲霞 孟繁举 +2 位作者 于淼 任沁源 包哲静 《工程科学与技术》 北大核心 2025年第5期134-141,共8页
非侵入式负荷识别方法作为分析用户用电行为的主要途径,对开展能耗监测、实现用电安全评估具有重要意义。针对传统基于V-I轨迹特征的非侵入式负荷识别方法存在特征重叠和无法识别未知负荷的问题,提出一种基于彩色V-I轨迹特征和轻量级孪... 非侵入式负荷识别方法作为分析用户用电行为的主要途径,对开展能耗监测、实现用电安全评估具有重要意义。针对传统基于V-I轨迹特征的非侵入式负荷识别方法存在特征重叠和无法识别未知负荷的问题,提出一种基于彩色V-I轨迹特征和轻量级孪生网络的非侵入式负荷识别方法。首先,通过负荷电压电流数据构建具有方向信息的彩色V-I轨迹图像。然后,利用孪生网络计算待识别负荷的V-I轨迹图像和负荷特征库中V-I轨迹图像之间的相似度,以完成初步识别。随后,计算电流谐波特征之间的余弦距离,与阈值对比完成最终负荷识别。在以STM32MP1微处理器为核心的嵌入式Linux系统上,使用实验室电器负荷进行了实物验证。结果表明:彩色V-I轨迹能更详细地反映负荷特征,提高负荷识别准确率,并且由于改进的人工智能模型比较轻量化,对计算量需求大大减小,可以在嵌入式设备端对负荷特征库进行动态实时在线更新,轻松完成模型再训练。与依赖服务器的传统算法相比,无需返回PC或服务器重新训练模型并重新移植模型到嵌入式设备端。该方法仅依赖嵌入式终端便可准确识别未知负荷,避免在出现较多未知负荷后识别准确率下降,保证了负荷识别效果。系统运算一次负荷识别时间为0.2 s左右,可以满足实时性要求,具有重要的研究价值和实用性。 展开更多
关键词 非侵入式负荷识别 边缘机器学习 孪生网络 嵌入式LINUX系统
在线阅读 下载PDF
热网FDI攻击的非侵入式检测方法
19
作者 刘鑫蕊 张修宇 +2 位作者 吴泽群 王睿 孙秋野 《控制理论与应用》 北大核心 2025年第7期1265-1274,共10页
针对热网易受网络攻击影响且惯性大的问题,为提高热网攻击检测的快速性和准确性,本文首次提出了一种能够放大攻击带来的状态量偏差的非侵入式在线检测方法,该方法首先将居住人热行为归纳为黑盒模型,将房屋和散热器归纳为白盒模型,通过... 针对热网易受网络攻击影响且惯性大的问题,为提高热网攻击检测的快速性和准确性,本文首次提出了一种能够放大攻击带来的状态量偏差的非侵入式在线检测方法,该方法首先将居住人热行为归纳为黑盒模型,将房屋和散热器归纳为白盒模型,通过白盒与黑盒组成的灰盒模型来计算室内热平衡状态,其次以室内温度为输入/散失热量计算的中间量,放大攻击带来的系统状态量偏差,最后通过多重匹配状态预测方法进行攻击检测.为验证所提方法的有效性,采用巴厘岛热网模型进行仿真实验,与传统的检测方法相比,本文所提方法可以有效放大攻击带来的状态量偏差,检测速度和检测率均更高. 展开更多
关键词 FDI 网络攻击 非侵入式检测 灰盒模型 热网
在线阅读 下载PDF
基于改进通道注意力优化变分自编码器的居民空调负荷辨识
20
作者 王凌云 唐涛 +2 位作者 鲍刚 阮胜冬 张涛 《仪器仪表学报》 北大核心 2025年第5期251-263,共13页
居民空调负荷的准确辨识是挖掘其调控潜力和实现需求响应的关键。针对目前居民空调功率求解方法的精度不足和计算复杂问题,故提出一种基于变分自编码器(VAE)和改进高效通道注意力机制(ECA)的居民空调负荷非侵入式辨识神经网络模型。改进... 居民空调负荷的准确辨识是挖掘其调控潜力和实现需求响应的关键。针对目前居民空调功率求解方法的精度不足和计算复杂问题,故提出一种基于变分自编码器(VAE)和改进高效通道注意力机制(ECA)的居民空调负荷非侵入式辨识神经网络模型。改进ECA采用结合全局平均池化与全局最大池化的双池化策略,既捕获整体统计信息又突出局部显著响应。借助压缩-重构机制,在降维后利用快速动态卷积核自适应捕捉局部通道交互信息,有效聚焦关键信息,为通道赋予合理权重;将改进ECA集成在VAE解码器中,增强模型对空调负荷的特征重构能力;模型进一步引入多任务学习框架,联合优化功率分解与状态识别任务,实现任务间信息共享和互补,从而提高整体辨识精度。同时,利用输出模块和后处理状态阈值约束,有效抑制非空调负荷的干扰。最后,在真实居民用电数据集上进行实验验证。实验结果表明,相较于两个对比模型,模型在3个地区所有居民功率分解的平均绝对误差(MAE)均值分别提升59.71%和9.22%,空调状态识别F1值达84.58%。消融实验表明,改进ECA使其中两个地区功率分解MAE分别降低56.23%和12.47%,多任务学习框架进一步推动辨识精度提升3.17%和5.90%。所提出的少量侵入式测量方案以30%用户侵入式量测数据训练,在保证模型准确性的同时,减少对用户数据的依赖,具有较强的应用潜力。 展开更多
关键词 居民空调负荷 变分自编码器 非侵入式负荷监测 通道注意力 多任务学习
原文传递
上一页 1 2 92 下一页 到第
使用帮助 返回顶部