To optimize turn on velocity of the SiC LIMS,we proposed a new structure for the LIMS that incorporates an opti-mized n^(+)layer and a multi-light triggered electrode design for the anode.The chip size is 5.5 mm×...To optimize turn on velocity of the SiC LIMS,we proposed a new structure for the LIMS that incorporates an opti-mized n^(+)layer and a multi-light triggered electrode design for the anode.The chip size is 5.5 mm×5.5 mm in dimension.The experiment results indicate that the saturation laser energy required to trigger the prepared SiC LIMS has been decreased from 1.8 mJ to 40μJ,with the forward blocking voltage of the prepared SiC LIMSs capable of withstanding over 7000 V.The leakage current is about 0.3μA at room temperature,and the output current density achieves 4.25 kA/cm^(2)(with di/dt larger than 20 kA/μs).展开更多
It is still a formidable challenge to simultaneously switch single-chain magnet(SCM)behavior via ligand modification and light irradiation in the field of molecular spintronics.Herein,we present a ligandbridged layer{...It is still a formidable challenge to simultaneously switch single-chain magnet(SCM)behavior via ligand modification and light irradiation in the field of molecular spintronics.Herein,we present a ligandbridged layer{[pzTpFe(CN)3]4Co2(Bib)4}·3H2O(1;pzTp,tetra-kis(1-pyrazolyl)borate;Bib,1,4-bis-(1Himidazol-1-yl)benzene)and a well-isolated double chain{[pzTpFe(CN)3]2Co(Bpi)2}·CH3CN·4H2O(2;Bpi,1-Biphenyl-4-yl-1H-imidazole)that display reversible metal-to-metal charge transfer(MMCT)between FeIII LS(μ-CN)CoII HS(μ-NC)FeIII LS(LS,low spin;HS,high spin)and FeIII LS(μ-CN)CoIII LS(μ-NC)FeII LS linkages under alternating irradiation with 808 and 532 nm lasers.The bidirectional light irradiations induces significant changes in anisotropy and intrachain magnetic interactions,resulting in the on/off switching of SCM behavior with observable hysteresis loops by 808 and 532 nm light irradiations for both compounds.Because of the ligand modification,the SCM property of 2 with the monodentate ligand is greatly improved with a correlation length increased to 83,which is the largest correlation length among all reported light actuated SCMs.Furthermore,the influence of ligand modification on their thermally induced MMCT is also discussed.This study provides a rational approach for the swift and reversible control of SCM behavior via ligand modified and light induced MMCT,which is crucial to the future technological demand for high-density data storage and processing.展开更多
In this work, BaWO4 nanospheres were successfully prepared by hydrothermal process. The bipolar resistive switching behavior of Ag/BaWO4/FTO device is observed. Moreover, this resistive switching behavior can be modul...In this work, BaWO4 nanospheres were successfully prepared by hydrothermal process. The bipolar resistive switching behavior of Ag/BaWO4/FTO device is observed. Moreover, this resistive switching behavior can be modulated by white light. The device can maintain superior stability in the dark and under white-light illumination. This study is useful for developing the light-controlled nonvolatile memory devices.展开更多
Atom–nanowire coupling system is a promising platform for optical quantum information processing. Unlike the previous designing of optical switch and transistor requiring a dedicated multi-level emitter and high fine...Atom–nanowire coupling system is a promising platform for optical quantum information processing. Unlike the previous designing of optical switch and transistor requiring a dedicated multi-level emitter and high fineness microcavity,a new proposal is put forward which contains a single two-level atom asymmetrically coupled with two nanowires. Singleemitter manipulation of photonic signals for bilateral coherent incident is clear now, since we specify atomic saturation nonlinearity into three contributions which brings us a new approach to realizing light-controlled-light at weak light and single-atom levels. An efficient optically controllable switch based on self-matching-induced-block and a concise optical transistor are proposed. Our findings show potential applications in full-optical devices.展开更多
A hybrid switching node structure with light and microwave links is proposed, which is applicable to the future data relay satellite systems, aiming at the development trend of coexistence of light- link and microwave...A hybrid switching node structure with light and microwave links is proposed, which is applicable to the future data relay satellite systems, aiming at the development trend of coexistence of light- link and microwave-link in the future. An experimental system for the light and microwave hybrid switching node based on wavelength selective optical switches (WSS) and optical transceiver modules, is established. It is shown by our experiment that this hybrid switching node can realize the dynamic bandwidth allocation and wavelength routing while the bit error rate of light link is less than 10?12, which provides a method for solving the hybrid switching problem of light-link and microwave-link on the future data relay satellite systems.展开更多
基金supported by Rector’s fund of China Academy of Engineering Physics(Grant No.YZJJZQ2022002)the National Natural Science Foundation of China(Grant No.61504127).
文摘To optimize turn on velocity of the SiC LIMS,we proposed a new structure for the LIMS that incorporates an opti-mized n^(+)layer and a multi-light triggered electrode design for the anode.The chip size is 5.5 mm×5.5 mm in dimension.The experiment results indicate that the saturation laser energy required to trigger the prepared SiC LIMS has been decreased from 1.8 mJ to 40μJ,with the forward blocking voltage of the prepared SiC LIMSs capable of withstanding over 7000 V.The leakage current is about 0.3μA at room temperature,and the output current density achieves 4.25 kA/cm^(2)(with di/dt larger than 20 kA/μs).
基金supported by the National Natural Science Foundation of China(grant nos.21901133,22171155,22035003,91856124,22025101,91961114,21871039,and 22173015)China National Postdoctoral Program for Innovative Talents(grant no.BX20180147).
文摘It is still a formidable challenge to simultaneously switch single-chain magnet(SCM)behavior via ligand modification and light irradiation in the field of molecular spintronics.Herein,we present a ligandbridged layer{[pzTpFe(CN)3]4Co2(Bib)4}·3H2O(1;pzTp,tetra-kis(1-pyrazolyl)borate;Bib,1,4-bis-(1Himidazol-1-yl)benzene)and a well-isolated double chain{[pzTpFe(CN)3]2Co(Bpi)2}·CH3CN·4H2O(2;Bpi,1-Biphenyl-4-yl-1H-imidazole)that display reversible metal-to-metal charge transfer(MMCT)between FeIII LS(μ-CN)CoII HS(μ-NC)FeIII LS(LS,low spin;HS,high spin)and FeIII LS(μ-CN)CoIII LS(μ-NC)FeII LS linkages under alternating irradiation with 808 and 532 nm lasers.The bidirectional light irradiations induces significant changes in anisotropy and intrachain magnetic interactions,resulting in the on/off switching of SCM behavior with observable hysteresis loops by 808 and 532 nm light irradiations for both compounds.Because of the ligand modification,the SCM property of 2 with the monodentate ligand is greatly improved with a correlation length increased to 83,which is the largest correlation length among all reported light actuated SCMs.Furthermore,the influence of ligand modification on their thermally induced MMCT is also discussed.This study provides a rational approach for the swift and reversible control of SCM behavior via ligand modified and light induced MMCT,which is crucial to the future technological demand for high-density data storage and processing.
基金supported by the National Nature Science Foundation of China (Grant No. 51372209)
文摘In this work, BaWO4 nanospheres were successfully prepared by hydrothermal process. The bipolar resistive switching behavior of Ag/BaWO4/FTO device is observed. Moreover, this resistive switching behavior can be modulated by white light. The device can maintain superior stability in the dark and under white-light illumination. This study is useful for developing the light-controlled nonvolatile memory devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11864018 and 11574229)the Scientific Research Foundation of Education Department of Jiangxi Province,China(Grant No.GJJ170645)the Doctor Startup Fund of the Natural Science of Jinggangshan University,China(Grant No.JZB16003)
文摘Atom–nanowire coupling system is a promising platform for optical quantum information processing. Unlike the previous designing of optical switch and transistor requiring a dedicated multi-level emitter and high fineness microcavity,a new proposal is put forward which contains a single two-level atom asymmetrically coupled with two nanowires. Singleemitter manipulation of photonic signals for bilateral coherent incident is clear now, since we specify atomic saturation nonlinearity into three contributions which brings us a new approach to realizing light-controlled-light at weak light and single-atom levels. An efficient optically controllable switch based on self-matching-induced-block and a concise optical transistor are proposed. Our findings show potential applications in full-optical devices.
文摘A hybrid switching node structure with light and microwave links is proposed, which is applicable to the future data relay satellite systems, aiming at the development trend of coexistence of light- link and microwave-link in the future. An experimental system for the light and microwave hybrid switching node based on wavelength selective optical switches (WSS) and optical transceiver modules, is established. It is shown by our experiment that this hybrid switching node can realize the dynamic bandwidth allocation and wavelength routing while the bit error rate of light link is less than 10?12, which provides a method for solving the hybrid switching problem of light-link and microwave-link on the future data relay satellite systems.
文摘目的 观察调Q1064 nm激光联合水光注射及微针治疗黄褐斑的临床疗效。方法 自2023年9月至2024年9月,南京医科大学附属苏州医院皮肤科收治黄褐斑患者104例,随机分为对照组(36例)、观察组1(34例)、观察组2(34例)。在治疗前、治疗后及治疗后6个月时,采用黄褐斑面积及严重指数(melasma area and severity index,MASI)、皮肤光学检测仪、患者的满意率评估疗效。同时记录治疗后的平均恢复时间和并发症发生情况。结果 治疗后3组MASI评分均低于治疗前,观察组总有效率为67.65%(46/68)高于对照组44.44%(16/36),观察组2有效率为73.53%(25/34)高于观察组1有效率61.76%(21/34),差异有统计学意义(P<0.05)。观察组2的平均恢复时间(7.27±1.84)d显著短于观察组1(9.55±2.15)d和对照组(10.82±2.56)d,差异有统计学意义(P<0.05)。治疗后3组并发症的发生率比较,差异有统计学意义(P<0.05)。结论 光电联合水光注射及微针治疗黄褐斑效果显著,且恢复时间较短,安全性较高。
文摘目的:探究调Q1064 nm激光联合强脉冲光对黄褐斑患者皮肤颜色评分和皮肤美学效果的影响。方法:选取2021年1月-2023年1月笔者医院收治的86例女性黄褐斑患者为研究对象,采用便签法随机分为观察组和对照组,各43例。对照组采用强脉冲光治疗,观察组采用调Q1064 nm激光联合强脉冲光治疗,比较治疗6个月后两组患者皮肤美学效果[皮肤黑素指数(Melanin index,MI)、红斑指数(Erythema index,EI)]、皮肤颜色分级及不良反应情况,记录治疗前及治疗6个月后两组患者黄褐斑面积严重指数(Melasma area and severity index,MASI)、皮肤屏障功能(皮脂含量、角质层含水量、经表皮水分流失值)。结果:治疗6个月后,观察组患者MASI、MI及EI指数、皮肤颜色评分明显低于对照组(P<0.05);治疗前及治疗6个月后两组患者皮肤屏障功能指标均无统计学意义(P>0.05),且两组治疗期间不良反应发生率比较均无统计学意义(P>0.05)。结论:调Q1064 nm激光联合强脉冲光能够有效改善患者面部黄褐斑情况,提亮患者肤色,美学效果较好,且无明显不良反应。