Suitable temperature and light intensity play important roles in the formation of harmful algae blooms(HABs),which can pose serious threats to aquatic ecosystems and human health.In this study,we measured the growth,p...Suitable temperature and light intensity play important roles in the formation of harmful algae blooms(HABs),which can pose serious threats to aquatic ecosystems and human health.In this study,we measured the growth,physiological function,and paralytic shellfish toxins(PSTs)production of Alexandrium pacificum(CCMA-272),a strain isolated from East China Sea,at different temperatures(15,20,and 25℃)and light intensities(30,60,and 90μmol photons/(m^(2)·s)).Results indicate that temperature and light intensity significantly affected the growth,physiology,and toxigenic potentials of A.pacificum.The optimal conditions for the growth of A.pacificum were observed at 20℃ under60μmol photons/(m^(2)·s).Regarding the production of PSTs,this strain of A.pacificum produced 12 PSTs,including carbamate toxins:saxitoxin(STX),neosaxitoxin(NEO),and gonyautoxin 1–4(GTX1,GTX2,GTX3,GTX4);dicarbamoyl toxins:dicarbamoylsaxitoxin(dcSTX),dicarbamoylgonyautoxin 2,3(dcGTX2,dcGTX3);and N-sulfocarbamoyl toxins:N-sulfocarbamoylgonyautoxin 1,2(C1,C2),and gonyautoxin 5(GTX5).Among all the PSTs,C2 was the most abundant.Low temperature(15℃)and high light intensity(90μmol photons/(m^(2)·s))were beneficial for the production of PSTs in A.pacificum.When cultured at 20 and 25℃,A.pacificum generated comparable total quantities of PSTs,yet the toxicity levels were lower at 25℃.Intra-cellular PSTs contents were greater than extra-cellular PSTs contents,except those under the condition of 25℃ with 30μmol photons/(m^(2)·s).However,as the increase of temperature,A.pacificum released more amounts of analogues with higher toxicity levels(e.g.,STX and dcGTX_(2))into the environment than intracellularly.These findings emphasize the significant sensitivity of A.pacificum to temperature and light intensity,highlighting the importance of evaluating both intra-cellular and extra-cellular PSTs for assessing its toxicity and aiding in the prediction and management of HABs.展开更多
The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by deposit...The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight.展开更多
In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,th...In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics.展开更多
As a crucial component of the Earth’s climate system,Antarctic sea ice has demonstrated significant variability over the satellite era.Here,we identify a remarkable decadal transition in the total Antarctic Sea Ice E...As a crucial component of the Earth’s climate system,Antarctic sea ice has demonstrated significant variability over the satellite era.Here,we identify a remarkable decadal transition in the total Antarctic Sea Ice Extent(SIE).The stage from 1979 to 2006 is characterized by high-frequency(i.e.,seasonal to interannual)temporal variability in SIE and zonal asymmetry in Sea Ice Concentration(SIC),which is primarily under the control of the Amundsen Sea Low(ASL).After 2007,however,sea ice changes exhibit a more spatially homogeneous pattern in SIC and a more temporally long-lasting mode in SIE.Further analysis reveals that sea ice-ocean interaction plays a major role in the low-frequency(i.e.,multiannual)variability of Antarctic sea ice from 2007−22.The related physical process is inferred to manifest as a strong coupling between the surface and the subsurface ocean layers,involving enhanced vertical convection and the downward delivery of the surface anomalies related to ice melting and freezing processes,thus maintaining the SIE anomalies for a longer time.Furthermore,this process mainly occurs in the Amundsen-Bellingshausen Sea(ABS)sector,and the weakened subsurface ocean stratification is the key factor triggering the coupling process in this region.We find that the Circumpolar Deep Water(CDW)over the ABS sector continued to shoal before 2007 and remained stable thereafter.It is speculated that the shoaling of the CDW may be a possible driver leading to the weakening of the subsurface stratification.展开更多
El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation an...El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.展开更多
During the boreal summer,intraseasonal oscillations exhibit significant interannual variations in intensity over two key regions:the central-western equatorial Pacific(5°S-5°N,150°E-150°W)and the s...During the boreal summer,intraseasonal oscillations exhibit significant interannual variations in intensity over two key regions:the central-western equatorial Pacific(5°S-5°N,150°E-150°W)and the subtropical Northwestern Pacific(10°-20°N,130°E-175°W).The former is well-documented and considered to be influenced by the ENSO,while the latter has received comparatively less attention and is likely influenced by the Pacific Meridional Mode(PMM),as suggested by partial correlation analysis results.To elucidate the physical processes responsible for the enhanced(weakened)intraseasonal convection over the subtropical northwestern Pacific during warm(cold)PMM years,the authors employed a moisture budget analysis.The findings reveal that during warm PMM years,there is an increase in summer-mean moisture over the subtropical northwestern Pacific.This increase interacts with intensified vertical motion perturbations in the region,leading to greater vertical moisture advection in the lower troposphere and consequently resulting in convective instability.Such a process is pivotal in amplifying intraseasonal convection anomalies.The observational findings were further verified by model experiments forced by PMM-like sea surface temperature patterns.展开更多
Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts t...Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts through a simple one-pot thermal process,enabling the efficient reduction of Cr(Ⅵ).With a Palygorskite to CaIn_(2)S_(4) mass ratio of 5%,the conversion rate of Cr(Ⅵ)reached 98%after 60min of visible-light exposure,with a remarkable reaction rate of 0.0633 min^(-1).The effective integration of CaIn_(2)S_(4) with Palygorskite led to a more uniform dispersion of CaIn_(2)S_(4),exposing more reactive sites.Moreover,the establishment of a heterojunction between CaIn_(2)S_(4) and Palygorskite facilitated the transport of photogenerated electrons from CaIn_(2)S_(4),enhancing the efficiency of charge separation.These factors contribute to the improved photocatalytic performance.Additionally,the developed composite photocatalysts demonstrated excellent stability under light exposure and could be reused efficiently.Trapping tests on active substances revealed that e-played key roles in the Cr(Ⅵ)reduction.This research suggests the potential of using natural minerals to fabricate composite photocatalysts capable of effectively removing pollutants from the environment using solar energy.展开更多
Maize is an important source of calories and protein in human lives in many countries of the world and is the main staple food in Africa, particularly in eastern Africa. In the Sudan, the low yield of maize was mainly...Maize is an important source of calories and protein in human lives in many countries of the world and is the main staple food in Africa, particularly in eastern Africa. In the Sudan, the low yield of maize was mainly due to the use of low yielding landraces. It is necessary to carry out breeding programs that deal with the production of high yielding, adaptable new varieties. Therefore, this study aimed to estimate genetic variability, heritability, genotypic performance and interrelationships among the traits. Ten maize genotypes evaluated at White Nile Research Station Farm, Kosti, of the Agricultural Research Corporation (ARC), Wad Medani Sudan were planted in a randomized complete block design with three replications during the two seasons of 2021 and 2022. Most evaluated genotypes exhibited a wide and significant variation in the 11 measured traits. Genotypic coefficient of variation and genetic advance were recorded for days to 50% tasseling, ear diameter (cm), number of grains per row and grain yield (t/ha) in both seasons. High heritability and genetic advance were recorded for grain yield, ear length, ear height, plant height, number of rows per ear, ear weight, days to 50% tasseling, 100-grain weight and days to 50% silking. Moreover, there was a highly significant and positive correlation of grain yield with number of rows per ear (r = 0.479), ear length (r = 0.381), 100-grain weight (r = 0.344) and days to 50% tasseling (r = 0.214). The highest yielding five genotypes across the seasons were TZCOM1/ZDPSYN (4.2 t/ha), EEPVAH-3 (4.2 t/ha), F2TWLY131228 (4.1 t/ha), PVA SYN6F2 (3.9 t/ha) and EEPVAH-9 (3.8 t/ha) these were needed to check the adaptability, stability and to test major maize growing areas to make sound recommendations for release.展开更多
A visible-light-enabled method for the synthesis ofα-azidoketones has been developed via oxo-azidation of alkenyl silanes with trimethylsilylazide and molecular oxygen under mild conditions.The reaction could be carr...A visible-light-enabled method for the synthesis ofα-azidoketones has been developed via oxo-azidation of alkenyl silanes with trimethylsilylazide and molecular oxygen under mild conditions.The reaction could be carried out in gram scale.Various radical sources,including trifluoromethyl radical,thiocyanate radical,bromide radical,chlorine radical could partici-pate effectively instead of azide radical in the reaction.展开更多
Varietal deficiencies of upland rice lead to a low paddy grain yield. The aim of this study was to mutagenesis upland rice varieties to improve their agronomic performance. Seeds of varieties FKR45N and FKR47N were th...Varietal deficiencies of upland rice lead to a low paddy grain yield. The aim of this study was to mutagenesis upland rice varieties to improve their agronomic performance. Seeds of varieties FKR45N and FKR47N were therefore irradiated with doses 300, 350 and 400 Gy. The irradiated seeds were sown and the panicles of the M1 plants were individually harvested, and then were advanced to M4 using the “one panicle - one progeny” method. The agronomic performance of M4 lines was compared to that of their parent. The gamma ray mutagenesis has induced significant variability in five yield components, i.e., plant height, main panicle length, total numbers of tillers and productive tillers and paddy grain yield between mutant lines. The highest variabilities were shown for the total number of tillers and the number of productive tillers as well as FKR45N (CV% = 40 % and 36%) and FKR47N (CV% = 31% and 30%) mutant lines. Principal component analysis led to rank the mutant lines from each variety in three clusters. The Pearson correlation showed that the paddy grain yield was significantly and positively correlated with the number of productive tillers (r = 0.61) and plant height (r = 0.66) for FKR47N mutant lines, and these correlation coefficients were r = 0.52 and r = 0.51 for FKR45N mutant lines, respectively. Gamma-ray irradiation also induced an earliness of 50% flowering of 62 days after sowing (DAS) in two FKR45N mutant lines and 67 DAS in one of KR47N mutant lines. The paddy grain yield was improved by 120% and 20% in two FKR45N and FKR47N mutant lines, respectively. A dwarf FKR45N mutant line with an early flowering of 67 DAS and a paddy grain yield (2.34 t ha−1) was generated. These results suggested that any positive increase in the six quantitative traits will increase the paddy grain yield.展开更多
In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still rel...In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.展开更多
Stomata are tiny pores on the plant leaf surface that regulate the exchange of water and gases between the plant and the external environment.They are crucial for photosynthesis,water use efficiency(WUE),and the plant...Stomata are tiny pores on the plant leaf surface that regulate the exchange of water and gases between the plant and the external environment.They are crucial for photosynthesis,water use efficiency(WUE),and the plant’s ability to adapt to environmental changes.Stomatal movement is vital for understanding how plants adapt to environmental stress and optimize resource utilization.Changes in environmental conditions,especially the quality and intensity of light throughout the day,affect stomatal dynamics and diurnal behavior,which in turn impact photosynthetic efficiency and water-use efficiency.In this review,we summarize the biophysical principles and mechanisms of stomatal movement regulated by ion transport at the plasma membrane,vacuolar membrane and metabolic activity through persulfidation or S-nitrosylation modifications.Specifically,we focus on recent progress in the regulation of stomatal movement by different light qualities,and summarize the photochemical and biochemical events underlying photoreceptors as well as the knowledge of novel regulatory functions and signaling in the multilayer control of stomatal movement and environmental adaptation.Furthermore,as rising global temperatures and increased water needs of farming methods are expected to escalate future crop losses,we explore the potential of smart LED lighting and gene editing technology in enhancing photosynthetic efficiency and water-use efficiency,leading to increased crop biomass and higher crop yields.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.32101290,52009082)the Natural Science Foundation of Jiangsu Province(No.BK20210364)the Fundamental Research Funds for the Central Universities(No.B220202044)。
文摘Suitable temperature and light intensity play important roles in the formation of harmful algae blooms(HABs),which can pose serious threats to aquatic ecosystems and human health.In this study,we measured the growth,physiological function,and paralytic shellfish toxins(PSTs)production of Alexandrium pacificum(CCMA-272),a strain isolated from East China Sea,at different temperatures(15,20,and 25℃)and light intensities(30,60,and 90μmol photons/(m^(2)·s)).Results indicate that temperature and light intensity significantly affected the growth,physiology,and toxigenic potentials of A.pacificum.The optimal conditions for the growth of A.pacificum were observed at 20℃ under60μmol photons/(m^(2)·s).Regarding the production of PSTs,this strain of A.pacificum produced 12 PSTs,including carbamate toxins:saxitoxin(STX),neosaxitoxin(NEO),and gonyautoxin 1–4(GTX1,GTX2,GTX3,GTX4);dicarbamoyl toxins:dicarbamoylsaxitoxin(dcSTX),dicarbamoylgonyautoxin 2,3(dcGTX2,dcGTX3);and N-sulfocarbamoyl toxins:N-sulfocarbamoylgonyautoxin 1,2(C1,C2),and gonyautoxin 5(GTX5).Among all the PSTs,C2 was the most abundant.Low temperature(15℃)and high light intensity(90μmol photons/(m^(2)·s))were beneficial for the production of PSTs in A.pacificum.When cultured at 20 and 25℃,A.pacificum generated comparable total quantities of PSTs,yet the toxicity levels were lower at 25℃.Intra-cellular PSTs contents were greater than extra-cellular PSTs contents,except those under the condition of 25℃ with 30μmol photons/(m^(2)·s).However,as the increase of temperature,A.pacificum released more amounts of analogues with higher toxicity levels(e.g.,STX and dcGTX_(2))into the environment than intracellularly.These findings emphasize the significant sensitivity of A.pacificum to temperature and light intensity,highlighting the importance of evaluating both intra-cellular and extra-cellular PSTs for assessing its toxicity and aiding in the prediction and management of HABs.
基金supported by the Science and Technology Planning Project of Fujian Province(No.2023Y4015)the Marine and Fishery Development Special Fund of Xiamen(No.23YYST064QCB36)the Natural Science Foundation of Fujian Province(No.2021J011210).
文摘The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight.
基金supported by the Natural Science Foundation of Shandong Province(nos.ZR2023MF047,ZR2024MA055 and ZR2023QF139)the Enterprise Commissioned Project(nos.2024HX104 and 2024HX140)+1 种基金the China University Industry-University-Research Innovation Foundation(nos.2021ZYA11003 and 2021ITA05032)the Science and Technology Plan for Youth Innovation of Shandong's Universities(no.2019KJN012).
文摘In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics.
基金supported by the National Natural Science Foundation China(Grant No.42176222).
文摘As a crucial component of the Earth’s climate system,Antarctic sea ice has demonstrated significant variability over the satellite era.Here,we identify a remarkable decadal transition in the total Antarctic Sea Ice Extent(SIE).The stage from 1979 to 2006 is characterized by high-frequency(i.e.,seasonal to interannual)temporal variability in SIE and zonal asymmetry in Sea Ice Concentration(SIC),which is primarily under the control of the Amundsen Sea Low(ASL).After 2007,however,sea ice changes exhibit a more spatially homogeneous pattern in SIC and a more temporally long-lasting mode in SIE.Further analysis reveals that sea ice-ocean interaction plays a major role in the low-frequency(i.e.,multiannual)variability of Antarctic sea ice from 2007−22.The related physical process is inferred to manifest as a strong coupling between the surface and the subsurface ocean layers,involving enhanced vertical convection and the downward delivery of the surface anomalies related to ice melting and freezing processes,thus maintaining the SIE anomalies for a longer time.Furthermore,this process mainly occurs in the Amundsen-Bellingshausen Sea(ABS)sector,and the weakened subsurface ocean stratification is the key factor triggering the coupling process in this region.We find that the Circumpolar Deep Water(CDW)over the ABS sector continued to shoal before 2007 and remained stable thereafter.It is speculated that the shoaling of the CDW may be a possible driver leading to the weakening of the subsurface stratification.
基金jointly supported by projects of the National Natural Science Foundation of China [grant numbers 42141017 and 41975112]。
文摘El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.
基金supported by the National Natural Science Foundation of China [grant number 42088101]。
文摘During the boreal summer,intraseasonal oscillations exhibit significant interannual variations in intensity over two key regions:the central-western equatorial Pacific(5°S-5°N,150°E-150°W)and the subtropical Northwestern Pacific(10°-20°N,130°E-175°W).The former is well-documented and considered to be influenced by the ENSO,while the latter has received comparatively less attention and is likely influenced by the Pacific Meridional Mode(PMM),as suggested by partial correlation analysis results.To elucidate the physical processes responsible for the enhanced(weakened)intraseasonal convection over the subtropical northwestern Pacific during warm(cold)PMM years,the authors employed a moisture budget analysis.The findings reveal that during warm PMM years,there is an increase in summer-mean moisture over the subtropical northwestern Pacific.This increase interacts with intensified vertical motion perturbations in the region,leading to greater vertical moisture advection in the lower troposphere and consequently resulting in convective instability.Such a process is pivotal in amplifying intraseasonal convection anomalies.The observational findings were further verified by model experiments forced by PMM-like sea surface temperature patterns.
基金supported by the National Natural Science Foundation of China(Nos.22206065 and 22109059)the Jinling Institute of Technology's Doctor Start-up Fund(No.jitb-202024)the Natural Science Foundation of Jiangsu Province(No.BK20221167).
文摘Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts through a simple one-pot thermal process,enabling the efficient reduction of Cr(Ⅵ).With a Palygorskite to CaIn_(2)S_(4) mass ratio of 5%,the conversion rate of Cr(Ⅵ)reached 98%after 60min of visible-light exposure,with a remarkable reaction rate of 0.0633 min^(-1).The effective integration of CaIn_(2)S_(4) with Palygorskite led to a more uniform dispersion of CaIn_(2)S_(4),exposing more reactive sites.Moreover,the establishment of a heterojunction between CaIn_(2)S_(4) and Palygorskite facilitated the transport of photogenerated electrons from CaIn_(2)S_(4),enhancing the efficiency of charge separation.These factors contribute to the improved photocatalytic performance.Additionally,the developed composite photocatalysts demonstrated excellent stability under light exposure and could be reused efficiently.Trapping tests on active substances revealed that e-played key roles in the Cr(Ⅵ)reduction.This research suggests the potential of using natural minerals to fabricate composite photocatalysts capable of effectively removing pollutants from the environment using solar energy.
文摘Maize is an important source of calories and protein in human lives in many countries of the world and is the main staple food in Africa, particularly in eastern Africa. In the Sudan, the low yield of maize was mainly due to the use of low yielding landraces. It is necessary to carry out breeding programs that deal with the production of high yielding, adaptable new varieties. Therefore, this study aimed to estimate genetic variability, heritability, genotypic performance and interrelationships among the traits. Ten maize genotypes evaluated at White Nile Research Station Farm, Kosti, of the Agricultural Research Corporation (ARC), Wad Medani Sudan were planted in a randomized complete block design with three replications during the two seasons of 2021 and 2022. Most evaluated genotypes exhibited a wide and significant variation in the 11 measured traits. Genotypic coefficient of variation and genetic advance were recorded for days to 50% tasseling, ear diameter (cm), number of grains per row and grain yield (t/ha) in both seasons. High heritability and genetic advance were recorded for grain yield, ear length, ear height, plant height, number of rows per ear, ear weight, days to 50% tasseling, 100-grain weight and days to 50% silking. Moreover, there was a highly significant and positive correlation of grain yield with number of rows per ear (r = 0.479), ear length (r = 0.381), 100-grain weight (r = 0.344) and days to 50% tasseling (r = 0.214). The highest yielding five genotypes across the seasons were TZCOM1/ZDPSYN (4.2 t/ha), EEPVAH-3 (4.2 t/ha), F2TWLY131228 (4.1 t/ha), PVA SYN6F2 (3.9 t/ha) and EEPVAH-9 (3.8 t/ha) these were needed to check the adaptability, stability and to test major maize growing areas to make sound recommendations for release.
文摘A visible-light-enabled method for the synthesis ofα-azidoketones has been developed via oxo-azidation of alkenyl silanes with trimethylsilylazide and molecular oxygen under mild conditions.The reaction could be carried out in gram scale.Various radical sources,including trifluoromethyl radical,thiocyanate radical,bromide radical,chlorine radical could partici-pate effectively instead of azide radical in the reaction.
文摘Varietal deficiencies of upland rice lead to a low paddy grain yield. The aim of this study was to mutagenesis upland rice varieties to improve their agronomic performance. Seeds of varieties FKR45N and FKR47N were therefore irradiated with doses 300, 350 and 400 Gy. The irradiated seeds were sown and the panicles of the M1 plants were individually harvested, and then were advanced to M4 using the “one panicle - one progeny” method. The agronomic performance of M4 lines was compared to that of their parent. The gamma ray mutagenesis has induced significant variability in five yield components, i.e., plant height, main panicle length, total numbers of tillers and productive tillers and paddy grain yield between mutant lines. The highest variabilities were shown for the total number of tillers and the number of productive tillers as well as FKR45N (CV% = 40 % and 36%) and FKR47N (CV% = 31% and 30%) mutant lines. Principal component analysis led to rank the mutant lines from each variety in three clusters. The Pearson correlation showed that the paddy grain yield was significantly and positively correlated with the number of productive tillers (r = 0.61) and plant height (r = 0.66) for FKR47N mutant lines, and these correlation coefficients were r = 0.52 and r = 0.51 for FKR45N mutant lines, respectively. Gamma-ray irradiation also induced an earliness of 50% flowering of 62 days after sowing (DAS) in two FKR45N mutant lines and 67 DAS in one of KR47N mutant lines. The paddy grain yield was improved by 120% and 20% in two FKR45N and FKR47N mutant lines, respectively. A dwarf FKR45N mutant line with an early flowering of 67 DAS and a paddy grain yield (2.34 t ha−1) was generated. These results suggested that any positive increase in the six quantitative traits will increase the paddy grain yield.
基金2024 Science and Technology Commissioner Service Group's Emergency Science and Technology Research Project for Wind Disaster Relief in Hainan Province(ZDYF2024YJGG002-8)China Huaneng Group Co.,Ltd.Headquarters Technology Project,Optimization of Photovoltaic Vegetable Greenhouse Structure and Research on Planting Agronomy in Tropical Regions(HNKJ22-HF77)。
文摘In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.
基金funded by the National Natural Science Foundation of China(Grant Nos.32272698,32441072,32122081)National Key Research and Development Program of China(Grant No.2023YFF1002000)+4 种基金Liaoning Province Youth Science Foundation A-Class Project(formerly Liaoning Natural Science Foundation Outstanding Youth Project,Grant No.2025-JQ-05)Liaoning Province’s Future Industry Frontier Technology Project(Grant Nos.2025JH2/101330184 and 2025JH2/101330185)National Postdoctoral Program for Innovative Talents(Grant No.BX20250016)Open Project Program of State Key Laboratory of Crop Stress Biology for Arid Areas of China(Grant No.SKLCSRHPKF2025017)HAAFS Science and Technology Innovation Special Project(Grant No.2023KJCXZX-JZS-10).
文摘Stomata are tiny pores on the plant leaf surface that regulate the exchange of water and gases between the plant and the external environment.They are crucial for photosynthesis,water use efficiency(WUE),and the plant’s ability to adapt to environmental changes.Stomatal movement is vital for understanding how plants adapt to environmental stress and optimize resource utilization.Changes in environmental conditions,especially the quality and intensity of light throughout the day,affect stomatal dynamics and diurnal behavior,which in turn impact photosynthetic efficiency and water-use efficiency.In this review,we summarize the biophysical principles and mechanisms of stomatal movement regulated by ion transport at the plasma membrane,vacuolar membrane and metabolic activity through persulfidation or S-nitrosylation modifications.Specifically,we focus on recent progress in the regulation of stomatal movement by different light qualities,and summarize the photochemical and biochemical events underlying photoreceptors as well as the knowledge of novel regulatory functions and signaling in the multilayer control of stomatal movement and environmental adaptation.Furthermore,as rising global temperatures and increased water needs of farming methods are expected to escalate future crop losses,we explore the potential of smart LED lighting and gene editing technology in enhancing photosynthetic efficiency and water-use efficiency,leading to increased crop biomass and higher crop yields.