This paper proposes a non-intrusive computational method for mechanical dynamic systems involving a large-scale of interval uncertain parameters,aiming to reduce the computational costs and improve accuracy in determi...This paper proposes a non-intrusive computational method for mechanical dynamic systems involving a large-scale of interval uncertain parameters,aiming to reduce the computational costs and improve accuracy in determining bounds of system response.The screening method is firstly used to reduce the scale of active uncertain parameters.The sequential high-order polynomials surrogate models are then used to approximate the dynamic system’s response at each time step.To reduce the sampling cost of constructing surrogate model,the interaction effect among uncertain parameters is gradually added to the surrogate model by sequentially incorporating samples from a candidate set,which is composed of vertices and inner grid points.Finally,the points that may produce the bounds of the system response at each time step are searched using the surrogate models.The optimization algorithm is used to locate extreme points,which contribute to determining the inner points producing system response bounds.Additionally,all vertices are also checked using the surrogate models.A vehicle nonlinear dynamic model with 72 uncertain parameters is presented to demonstrate the accuracy and efficiency of the proposed uncertain computational method.展开更多
The global rapid transition towards sustainable energy systems has heightened the demand for highperformance lithium metal batteries(LMBs),where understanding interfacial phenomena is paramount.In this contribution,we...The global rapid transition towards sustainable energy systems has heightened the demand for highperformance lithium metal batteries(LMBs),where understanding interfacial phenomena is paramount.In this contribution,we present an on-the-fly machine learning molecular dynamics(OTF-MLMD)approach to probe the complex side reactions at lithium metal anode–electrolyte interfaces with exceptional accuracy and computational efficiency.The machine learning force field(MLFF)was firstly validated in a bulk-phase system comprising twenty 1,2-dimethoxyethane(DME)molecules,demonstrating energy fluctuations and structural parameters in close agreement with ab initio molecular dynamics(AIMD)benchmarks.Subsequent simulations of lithium–DME and lithium–electrolyte interfaces revealed minimal discrepancies in energy,bond lengths,and net charge variations(notably in FSI-species),underscoring the method's DFT-level precision of the approach.A further small-scale interfacial model enabled on-the-fly training over a mere of 340 fs,which was then successfully transferred to a large-scale simulation encompassing nearly 300,000 atoms,representing the largest interfacial model in LMB research up to date.The hierarchical validation strategy not only establishes the robustness of the MLFF in capturing both interfacial and bulk-phase chemistry but also paves the way for statistically meaningful simulations of battery interfaces.The fruitful findings highlight the transformative potential of OTF-MLMD in bridging the gap between atomistic accuracy and macroscopic modeling,affording a universal approach to understand interfacial reactions in LMBs.展开更多
This study investigates the instability characteristics of dynamic disasters resulting from disruption caused by extracting resources underground. Utilizing the split Hopkinson pressure bar (SHPB) system, the dynamic ...This study investigates the instability characteristics of dynamic disasters resulting from disruption caused by extracting resources underground. Utilizing the split Hopkinson pressure bar (SHPB) system, the dynamic response mechanism of coal energy evolution is examined, and the energy instability criterion is established. The validity of the instability criterion is explored from the standpoint of damage progression. The results demonstrate that the energy conversion mechanism undergoes a fundamental alternation under impact disturbance. Moreover, the energy release rate as well as the energy dissipation rate undergo comparable changes across distinct levels of impact disturbance. The distinction between the energy release rate and the energy dissipation rate (DRD) increases as coal mass deformation grows. Prior to coal facing instability and failure, the DRD experienced an inflection point followed by a sharp decrease. In conjunction with the discussion on the damage evolution, the physical and mechanical significance of DRD remains clear, which can essentially describe the whole impact loading process. The phenomenon that the inflection point appears and DRD subsequently suddenly decreases can be employed as the energy criterion prior to the failure of instability. Furthermore, this paper provides significant reference for the prediction of dynamic instability of coal under dynamic disturbance.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
Efcient and accurate monitoring and early warning of coal dynamic disaster and other disasters can provide guarantee for the efcient operation of mine transportation system.However,the traditional threshold early warn...Efcient and accurate monitoring and early warning of coal dynamic disaster and other disasters can provide guarantee for the efcient operation of mine transportation system.However,the traditional threshold early warning method often fails to warning some accidents.To address above issues,a new early warning method was proposed based on"quiet period"phenomenon of AE and EMR during fracture.It is found that,a"quiet period"of AE and EMR was present before the load reaches the peak stress,which could be used as one of the precursors to warn the imminent failure of coal and rock specimens.MS and AE signals increased abnormally followed by the phenomenon of"quiet period"before the occurrence of coal dynamic disaster on site,and the decrease of MS events in the"quiet period"is about 57%–88%compared with that in previous abnormal increase stage.During the damage evolution of coal and rock,"quiet period"phenomenon usually occurred at 85%–90%of the peak stress,where the slope of damage parameter curve is almost zero.The"quiet period"of the AE-EMR signals and the low change rate of damage parameter before failure provide a theoretical foundation for the coal dynamic disaster warning based on the"quiet period"precursor found in MS-AE-EMR monitoring system.These fndings will help reduce the number of under-reported events and improve early warning accuracy.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicl...The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicleto-infrastructure coordination frameworks partially address congestion mitigation,they often neglect priority-aware optimization and exhibit algorithmic bias toward dominant vehicle classes—critical limitations in mixed-priority scenarios involving emergency vehicles.To bridge this gap,this study proposes a preference game-theoretic coordination framework with adaptive strategy transfer protocol,explicitly balancing system-wide efficiency(measured by network throughput)with priority vehicle rights protection(quantified via time-sensitive utility functions).The approach innovatively combines(1)a multi-vehicle dynamic routing model with quantifiable preference weights,and(2)a distributed Nash equilibrium solver updated using replicator sub-dynamic models.The framework was evaluated on an urban road network containing 25 intersections with mixed priority ratios(10%–30%of vehicles with priority access demand),and the framework showed consistent benefits on four benchmarks(Social routing algorithm,Shortest path algorithm,The comprehensive path optimisation model,The emergency vehicle timing collaborative evolution path optimization method)showed consistent benefits.Results showthat across different traffic demand configurations,the proposed method reduces the average vehicle traveling time by at least 365 s,increases the road network throughput by 48.61%,and effectively balances the road loads.This approach successfully meets the diverse traffic demands of various vehicle types while optimizing road resource allocations.The proposed coordination paradigm advances theoretical foundations for fairness-aware traffic optimization while offering implementable strategies for next-generation cooperative vehicle-road systems,particularly in smart city deployments requiring mixed-priority mobility guarantees.展开更多
In order to quantitatively describe the geoelectric precursor anomaly in the short-impending process of earthquakes, a new geoelectric precursor index — (monthly) relative change rate of ground resistivity, R ρ...In order to quantitatively describe the geoelectric precursor anomaly in the short-impending process of earthquakes, a new geoelectric precursor index — (monthly) relative change rate of ground resistivity, R ρ (t) , is designed. Using this index and choosing the internationally accepted ground resistivity data before the Tangshan M =7.8 earthquake of July 28, 1976, the features of dynamic evolution pattern of R ρ(t) are studied. The results show that: ① about 10~9 months before earthquake, the ground resistivity in a certain range around the epicentral region begins to display the anomaly of accelerating descent, and the rate of descent is higher in the epicentral region than in surrounding areas; ② with the shortening of countdown before earthquake, the R ρ(t) value in epicentral region increases gradually (ground resistivity value decreases at an increasing rate); ③ the R ρ(t) value has the epicentral area as a center and its contour lines propagate towards surrounding areas with the shortening of countdown before earthquake; ④after the R ρ(t) value in epicentral region has descended at increasing rate to reach an extremity [ R ρ(t) = (7.0], it turns to descend at decreasing rate (2~3 months) and earthquake occurs when it accelerates again. Meanwhile, earthquake occurs when the contour lines of R ρ(t) stop propagating towards surrounding areas and turn to shrink back (2~3 months later). Its physical process can be explained by the″ swollen hypothesis″ of Prof. Fu and the theory of ″Slip-weakening and rockmass instability″ of Mei, Niu, et al ..展开更多
A thermal-mechanical and micro-macro coupled finite element(FE) model for the hot extrusion process of large-scale thick-walled Inconel 625 pipe was developed based on the DEFORM-2D platform.Then,the influence rules...A thermal-mechanical and micro-macro coupled finite element(FE) model for the hot extrusion process of large-scale thick-walled Inconel 625 pipe was developed based on the DEFORM-2D platform.Then,the influence rules of the key extrusion parameters on the average grain size and grain uniformity of the extruded pipe were revealed.The results show that with the increase of initial billet temperature,extrusion speed and friction coefficient,the grain uniformity is firstly improved and then deteriorated.Larger extrusion ratio leads to more uniform grain distribution.With the increase of initial billet temperature,the average grain size of the pipe first decreases and then increases.Additionally,larger extrusion ratio can bring smaller average grain size.The extrusion speed and friction coefficient have slight effects on the average grain size of the extruded pipe.展开更多
Based on assuming that there is the precursor film in the front of the apparent contact line (ACL), a model was proposed to understand the dynamic wetting process and associated dynamic contact angle. The present mo...Based on assuming that there is the precursor film in the front of the apparent contact line (ACL), a model was proposed to understand the dynamic wetting process and associated dynamic contact angle. The present model indicated that a new dimensionless characteristic parameter, 2, attects the dynamic wetting process and associated dynamic contact angle as well. However, the previous model suggested that the dynamic contact angle is dependent'on the capillary number and static contact angle only. An experimental investigation was conducted to measure the dynamic wetting behavior of silicon oil moving over glass, aluminum and stainless steel surfaces. It concluded that when the value of 2 was selected as 0.07, 0.16 and 0.35 for glass, aluminum and stainless steel, respectively, the experimental results were in good accordance with the prediction of the model. Furthermore, the comparison of the model with Strom's experimental data showed that 2 is independent on the species of liquids. Apparently, 2 should be interpreted as the effect of the solid surface properties on the dynamic wetting process.Meanwhile, it is found in the present experiment that the Hoffman-Voinov-Tanner law, which is valid at very low capillary number (Ca 〈〈 1 or 80〈 10°) recommend by Cazabat, still holds for higher contact angles, even up to 70°-80°. This is explained by (he present model very well.展开更多
In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To...In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To improve the dynamic performance of transient response driven by the set-point changes, a filter-based iterative learning control strategy is proposed. In the proposed updating law, a local-symmetric-integral operator is adopted for eliminating the measurement noise of output information,a set of desired trajectories are specified according to the set-point changes sequence, the current control input is iteratively achieved by utilizing smoothed output error to modify its control input at previous iteration, to which the amplified coefficients related to the different magnitudes of set-point changes are introduced. The convergence of the algorithm is conducted by incorporating frequency-domain technique into time-domain analysis. Numerical simulation demonstrates the effectiveness of the proposed strategy,展开更多
The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature cont...The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.展开更多
Experiences on earthquake prediction accumulated by the Chinese scientists in the last 20 years were synthetically analyzed. A prediction program was set up to demonstrate the development of the georesistivity anoma...Experiences on earthquake prediction accumulated by the Chinese scientists in the last 20 years were synthetically analyzed. A prediction program was set up to demonstrate the development of the georesistivity anomaly by using of the dynamic image, accordingly the earthquake prone area can be recognized. By revising the DYBS Ⅰ, which was developed in 1989, and adding some latest achievements, we worked out a software on earthquake prediction by the geoelectric method the DYBS Ⅱ. Some new feature of DYBS Ⅱ are: the anomalous area may be determined by the space distribution and its time variation of geoelectric parameters; The dynamic process that is associated with the development of earthquake anomaly can be displayed on the computer screen; Technique for the prediction of an impending earthquake was included too. Some results of the Tangshan earthquake were presented at the end of this paper.展开更多
Based on the dynamic monitoring data of crustal deformation, the parameter evolution for the dynamics pattern and fractal dimension of crustal deformation field and the integral activity level of many faults etc. befo...Based on the dynamic monitoring data of crustal deformation, the parameter evolution for the dynamics pattern and fractal dimension of crustal deformation field and the integral activity level of many faults etc. before and after the Tangshan (1976) and Lijiang (1996) strong earthquakes and others are studied by using the method of pattern dynamics. It is exposed that two time space characters, the ordered dimension drop of the deformation field and the accelerated motion of multi fault before an earthquake, are probably caused by the deformation localization and fault softening after the seismogenic process enters the nonlinear stage. They could be an important seismic precursor if they occurred repeatedly before strong earthquakes.展开更多
A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that dece...A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller.展开更多
We studied the conjunction practical stability and controllability of large-scale impulsive control systems by using the comparison systems and vector Lyapunov fimctions. Then the less conservative sufficient conditio...We studied the conjunction practical stability and controllability of large-scale impulsive control systems by using the comparison systems and vector Lyapunov fimctions. Then the less conservative sufficient conditions for conjunction practical stability and controllability of large-scale impulsive control system were obtained.展开更多
Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic...Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
A grid-connected inverter controlling method to analyze dynamic process of large-scale and grid-connected photovoltaic power station is proposed. The reference values of control variables are composed of maximum power...A grid-connected inverter controlling method to analyze dynamic process of large-scale and grid-connected photovoltaic power station is proposed. The reference values of control variables are composed of maximum power which is the output of the photovoltaic array of the photovoltaic power plant, and power factor specified by dispatching, the control strategy of dynamic feedback linearization is adopted. Nonlinear decoupling controller is designed for realizing decoupling control of active and reactive power. The cascade PI regulation is proposed to avoid inaccurate parameter estimation which generates the system static error. Simulation is carried out based on the simplified power system with large-scale photovoltaic plant modelling, and the power factor, solar radiation strength, and bus fault are considered for the further research. It’s demonstrated that the parameter adjustment of PI controller is simple and convenient, dynamic response of system is transient, and the stability of the inverter control is verified.展开更多
An efficient active-set approach is presented for both nonnegative and general linear programming by adding varying numbers of constraints at each iteration. Computational experiments demonstrate that the proposed app...An efficient active-set approach is presented for both nonnegative and general linear programming by adding varying numbers of constraints at each iteration. Computational experiments demonstrate that the proposed approach is significantly faster than previous active-set and standard linear programming algorithms.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12272142)Fundamental Research Funds for the Central Universities(Grant No.2172021XXJS048)。
文摘This paper proposes a non-intrusive computational method for mechanical dynamic systems involving a large-scale of interval uncertain parameters,aiming to reduce the computational costs and improve accuracy in determining bounds of system response.The screening method is firstly used to reduce the scale of active uncertain parameters.The sequential high-order polynomials surrogate models are then used to approximate the dynamic system’s response at each time step.To reduce the sampling cost of constructing surrogate model,the interaction effect among uncertain parameters is gradually added to the surrogate model by sequentially incorporating samples from a candidate set,which is composed of vertices and inner grid points.Finally,the points that may produce the bounds of the system response at each time step are searched using the surrogate models.The optimization algorithm is used to locate extreme points,which contribute to determining the inner points producing system response bounds.Additionally,all vertices are also checked using the surrogate models.A vehicle nonlinear dynamic model with 72 uncertain parameters is presented to demonstrate the accuracy and efficiency of the proposed uncertain computational method.
基金supported by the National Key Research and Development Program(2021YFB2500300)the National Natural Science Foundation of China(T2322015,92472101,22393903,22393900,and 52394170)+1 种基金the Beijing Municipal Natural Science Foundation(L247015 and L233004)Tsinghua University Initiative Scientific Research Program。
文摘The global rapid transition towards sustainable energy systems has heightened the demand for highperformance lithium metal batteries(LMBs),where understanding interfacial phenomena is paramount.In this contribution,we present an on-the-fly machine learning molecular dynamics(OTF-MLMD)approach to probe the complex side reactions at lithium metal anode–electrolyte interfaces with exceptional accuracy and computational efficiency.The machine learning force field(MLFF)was firstly validated in a bulk-phase system comprising twenty 1,2-dimethoxyethane(DME)molecules,demonstrating energy fluctuations and structural parameters in close agreement with ab initio molecular dynamics(AIMD)benchmarks.Subsequent simulations of lithium–DME and lithium–electrolyte interfaces revealed minimal discrepancies in energy,bond lengths,and net charge variations(notably in FSI-species),underscoring the method's DFT-level precision of the approach.A further small-scale interfacial model enabled on-the-fly training over a mere of 340 fs,which was then successfully transferred to a large-scale simulation encompassing nearly 300,000 atoms,representing the largest interfacial model in LMB research up to date.The hierarchical validation strategy not only establishes the robustness of the MLFF in capturing both interfacial and bulk-phase chemistry but also paves the way for statistically meaningful simulations of battery interfaces.The fruitful findings highlight the transformative potential of OTF-MLMD in bridging the gap between atomistic accuracy and macroscopic modeling,affording a universal approach to understand interfacial reactions in LMBs.
基金Projects(51934007,12072363,52004268) supported by the National Natural Science Foundation of ChinaProject(22KJD440002) supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,China。
文摘This study investigates the instability characteristics of dynamic disasters resulting from disruption caused by extracting resources underground. Utilizing the split Hopkinson pressure bar (SHPB) system, the dynamic response mechanism of coal energy evolution is examined, and the energy instability criterion is established. The validity of the instability criterion is explored from the standpoint of damage progression. The results demonstrate that the energy conversion mechanism undergoes a fundamental alternation under impact disturbance. Moreover, the energy release rate as well as the energy dissipation rate undergo comparable changes across distinct levels of impact disturbance. The distinction between the energy release rate and the energy dissipation rate (DRD) increases as coal mass deformation grows. Prior to coal facing instability and failure, the DRD experienced an inflection point followed by a sharp decrease. In conjunction with the discussion on the damage evolution, the physical and mechanical significance of DRD remains clear, which can essentially describe the whole impact loading process. The phenomenon that the inflection point appears and DRD subsequently suddenly decreases can be employed as the energy criterion prior to the failure of instability. Furthermore, this paper provides significant reference for the prediction of dynamic instability of coal under dynamic disturbance.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
基金supported by Grants from the National Natural Science Foundation of China(No.52004016)the Postdoctoral Research Foundation of China(No.2021M700371)+3 种基金the Major Science and Technology Innovation Project of Shandong Province(No.2019SDZY02)the Open Fund Project of Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard(No.2021SKMS05)Science and Technology Support Plan Project of Guizhou Province(No.[2021]515)The authors are grateful to the anonymous referees for their precious comments and suggestions.
文摘Efcient and accurate monitoring and early warning of coal dynamic disaster and other disasters can provide guarantee for the efcient operation of mine transportation system.However,the traditional threshold early warning method often fails to warning some accidents.To address above issues,a new early warning method was proposed based on"quiet period"phenomenon of AE and EMR during fracture.It is found that,a"quiet period"of AE and EMR was present before the load reaches the peak stress,which could be used as one of the precursors to warn the imminent failure of coal and rock specimens.MS and AE signals increased abnormally followed by the phenomenon of"quiet period"before the occurrence of coal dynamic disaster on site,and the decrease of MS events in the"quiet period"is about 57%–88%compared with that in previous abnormal increase stage.During the damage evolution of coal and rock,"quiet period"phenomenon usually occurred at 85%–90%of the peak stress,where the slope of damage parameter curve is almost zero.The"quiet period"of the AE-EMR signals and the low change rate of damage parameter before failure provide a theoretical foundation for the coal dynamic disaster warning based on the"quiet period"precursor found in MS-AE-EMR monitoring system.These fndings will help reduce the number of under-reported events and improve early warning accuracy.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金funded by the National Key Research and Development Program Project 2022YFB4300404.
文摘The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicleto-infrastructure coordination frameworks partially address congestion mitigation,they often neglect priority-aware optimization and exhibit algorithmic bias toward dominant vehicle classes—critical limitations in mixed-priority scenarios involving emergency vehicles.To bridge this gap,this study proposes a preference game-theoretic coordination framework with adaptive strategy transfer protocol,explicitly balancing system-wide efficiency(measured by network throughput)with priority vehicle rights protection(quantified via time-sensitive utility functions).The approach innovatively combines(1)a multi-vehicle dynamic routing model with quantifiable preference weights,and(2)a distributed Nash equilibrium solver updated using replicator sub-dynamic models.The framework was evaluated on an urban road network containing 25 intersections with mixed priority ratios(10%–30%of vehicles with priority access demand),and the framework showed consistent benefits on four benchmarks(Social routing algorithm,Shortest path algorithm,The comprehensive path optimisation model,The emergency vehicle timing collaborative evolution path optimization method)showed consistent benefits.Results showthat across different traffic demand configurations,the proposed method reduces the average vehicle traveling time by at least 365 s,increases the road network throughput by 48.61%,and effectively balances the road loads.This approach successfully meets the diverse traffic demands of various vehicle types while optimizing road resource allocations.The proposed coordination paradigm advances theoretical foundations for fairness-aware traffic optimization while offering implementable strategies for next-generation cooperative vehicle-road systems,particularly in smart city deployments requiring mixed-priority mobility guarantees.
文摘In order to quantitatively describe the geoelectric precursor anomaly in the short-impending process of earthquakes, a new geoelectric precursor index — (monthly) relative change rate of ground resistivity, R ρ (t) , is designed. Using this index and choosing the internationally accepted ground resistivity data before the Tangshan M =7.8 earthquake of July 28, 1976, the features of dynamic evolution pattern of R ρ(t) are studied. The results show that: ① about 10~9 months before earthquake, the ground resistivity in a certain range around the epicentral region begins to display the anomaly of accelerating descent, and the rate of descent is higher in the epicentral region than in surrounding areas; ② with the shortening of countdown before earthquake, the R ρ(t) value in epicentral region increases gradually (ground resistivity value decreases at an increasing rate); ③ the R ρ(t) value has the epicentral area as a center and its contour lines propagate towards surrounding areas with the shortening of countdown before earthquake; ④after the R ρ(t) value in epicentral region has descended at increasing rate to reach an extremity [ R ρ(t) = (7.0], it turns to descend at decreasing rate (2~3 months) and earthquake occurs when it accelerates again. Meanwhile, earthquake occurs when the contour lines of R ρ(t) stop propagating towards surrounding areas and turn to shrink back (2~3 months later). Its physical process can be explained by the″ swollen hypothesis″ of Prof. Fu and the theory of ″Slip-weakening and rockmass instability″ of Mei, Niu, et al ..
基金Project(2009ZX04005-031-11)supported by the Major National Science and Technology Special Project of ChinaProject(KP200911)supported by the Research Fund of State Key Laboratory of Solidification Processing of ChinaProject(B08040)supported by the"111"Project of China
文摘A thermal-mechanical and micro-macro coupled finite element(FE) model for the hot extrusion process of large-scale thick-walled Inconel 625 pipe was developed based on the DEFORM-2D platform.Then,the influence rules of the key extrusion parameters on the average grain size and grain uniformity of the extruded pipe were revealed.The results show that with the increase of initial billet temperature,extrusion speed and friction coefficient,the grain uniformity is firstly improved and then deteriorated.Larger extrusion ratio leads to more uniform grain distribution.With the increase of initial billet temperature,the average grain size of the pipe first decreases and then increases.Additionally,larger extrusion ratio can bring smaller average grain size.The extrusion speed and friction coefficient have slight effects on the average grain size of the extruded pipe.
基金Supported by the National Natural Science Foundation of China (Nos.50636020, 50406001).
文摘Based on assuming that there is the precursor film in the front of the apparent contact line (ACL), a model was proposed to understand the dynamic wetting process and associated dynamic contact angle. The present model indicated that a new dimensionless characteristic parameter, 2, attects the dynamic wetting process and associated dynamic contact angle as well. However, the previous model suggested that the dynamic contact angle is dependent'on the capillary number and static contact angle only. An experimental investigation was conducted to measure the dynamic wetting behavior of silicon oil moving over glass, aluminum and stainless steel surfaces. It concluded that when the value of 2 was selected as 0.07, 0.16 and 0.35 for glass, aluminum and stainless steel, respectively, the experimental results were in good accordance with the prediction of the model. Furthermore, the comparison of the model with Strom's experimental data showed that 2 is independent on the species of liquids. Apparently, 2 should be interpreted as the effect of the solid surface properties on the dynamic wetting process.Meanwhile, it is found in the present experiment that the Hoffman-Voinov-Tanner law, which is valid at very low capillary number (Ca 〈〈 1 or 80〈 10°) recommend by Cazabat, still holds for higher contact angles, even up to 70°-80°. This is explained by (he present model very well.
基金This work was supported by the National Natural Science Foundation of China (No. 60274055)
文摘In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To improve the dynamic performance of transient response driven by the set-point changes, a filter-based iterative learning control strategy is proposed. In the proposed updating law, a local-symmetric-integral operator is adopted for eliminating the measurement noise of output information,a set of desired trajectories are specified according to the set-point changes sequence, the current control input is iteratively achieved by utilizing smoothed output error to modify its control input at previous iteration, to which the amplified coefficients related to the different magnitudes of set-point changes are introduced. The convergence of the algorithm is conducted by incorporating frequency-domain technique into time-domain analysis. Numerical simulation demonstrates the effectiveness of the proposed strategy,
基金Project(61174132)supported by the National Natural Science Foundation of ChinaProject(2015zzts047)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20130162110067)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.
文摘Experiences on earthquake prediction accumulated by the Chinese scientists in the last 20 years were synthetically analyzed. A prediction program was set up to demonstrate the development of the georesistivity anomaly by using of the dynamic image, accordingly the earthquake prone area can be recognized. By revising the DYBS Ⅰ, which was developed in 1989, and adding some latest achievements, we worked out a software on earthquake prediction by the geoelectric method the DYBS Ⅱ. Some new feature of DYBS Ⅱ are: the anomalous area may be determined by the space distribution and its time variation of geoelectric parameters; The dynamic process that is associated with the development of earthquake anomaly can be displayed on the computer screen; Technique for the prediction of an impending earthquake was included too. Some results of the Tangshan earthquake were presented at the end of this paper.
文摘Based on the dynamic monitoring data of crustal deformation, the parameter evolution for the dynamics pattern and fractal dimension of crustal deformation field and the integral activity level of many faults etc. before and after the Tangshan (1976) and Lijiang (1996) strong earthquakes and others are studied by using the method of pattern dynamics. It is exposed that two time space characters, the ordered dimension drop of the deformation field and the accelerated motion of multi fault before an earthquake, are probably caused by the deformation localization and fault softening after the seismogenic process enters the nonlinear stage. They could be an important seismic precursor if they occurred repeatedly before strong earthquakes.
基金The National Natural Science Foundations of China(50505029)
文摘A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller.
文摘We studied the conjunction practical stability and controllability of large-scale impulsive control systems by using the comparison systems and vector Lyapunov fimctions. Then the less conservative sufficient conditions for conjunction practical stability and controllability of large-scale impulsive control system were obtained.
基金Supported by the National Natural Science Foundation of China(No.51108089)Doctoral Programs Foundation of Ministry of Education of China(No.20113514120005)the Foundation of the Education Department of Fujian Province(No.JA14057)
文摘Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
文摘A grid-connected inverter controlling method to analyze dynamic process of large-scale and grid-connected photovoltaic power station is proposed. The reference values of control variables are composed of maximum power which is the output of the photovoltaic array of the photovoltaic power plant, and power factor specified by dispatching, the control strategy of dynamic feedback linearization is adopted. Nonlinear decoupling controller is designed for realizing decoupling control of active and reactive power. The cascade PI regulation is proposed to avoid inaccurate parameter estimation which generates the system static error. Simulation is carried out based on the simplified power system with large-scale photovoltaic plant modelling, and the power factor, solar radiation strength, and bus fault are considered for the further research. It’s demonstrated that the parameter adjustment of PI controller is simple and convenient, dynamic response of system is transient, and the stability of the inverter control is verified.
文摘An efficient active-set approach is presented for both nonnegative and general linear programming by adding varying numbers of constraints at each iteration. Computational experiments demonstrate that the proposed approach is significantly faster than previous active-set and standard linear programming algorithms.