期刊文献+
共找到324篇文章
< 1 2 17 >
每页显示 20 50 100
Large eddy simulation of low-Reynolds-number flow past the SD7003 airfoil with an improved high-precision IPDG method
1
作者 Shixi Hao Ming Zhao +5 位作者 Qiushi Ding Jiabing Xiao Yanan Chen Wei Liu Xiaojian Li Zhengxian Liu 《Acta Mechanica Sinica》 2025年第2期70-87,共18页
At low-Reynolds-number,the performance of airfoil is known to be greatly affected by the formation and burst of a laminar separation bubble(LSB),which requires a more precise simulation of the delicate flow structures... At low-Reynolds-number,the performance of airfoil is known to be greatly affected by the formation and burst of a laminar separation bubble(LSB),which requires a more precise simulation of the delicate flow structures.A framework based on the interior penalty discontinuous Galerkin method and large eddy simulation approach was adopted in the present study.The performances of various subgrid models,including the Smagorinsky(SM)model,the dynamic Smagorinsky(DSM)model,the wall-adapting local-eddy-viscosity(WALE)model,and the VREMAN model,have been analyzed through flow simulations of the SD7003 airfoil at a Reynolds number of 60000.It turns out that the SM model fails to predict the emergence of LSB,even modified by the Van-Driest damping function.On the contrary,the best agreement is generally achieved by the WALE model in terms of flow separation,reattachment,and transition locations,together with the aerodynamic loads.Furthermore,the influence of numerical dissipation has also been discussed through the comparison of skin friction and resolved Reynolds stresses.As numerical dissipation decreases,the prediction accuracy of the WALE model degrades.Meanwhile,nonlinear variation could be observed from the performances of the DSM model,which could be attributed to the interaction between the numerical dissipation and the subgrid model. 展开更多
关键词 Discontinuous Galerkin Interior penalty method Subgrid-scale model large eddy simulation Laminar separation
原文传递
Research on hydrodynamic noise in the Francis turbine using large eddy simulation and acoustic analogy
2
作者 Xiu Wang Yan Yan Wen-quan Wang 《Journal of Hydrodynamics》 2025年第4期786-803,共18页
For Francis turbines,frequent operations under extremely low load conditions result in significant noise and pressure fluctuation issues.These issues may cause vibration and fatigue damage to the unit,accompanied by d... For Francis turbines,frequent operations under extremely low load conditions result in significant noise and pressure fluctuation issues.These issues may cause vibration and fatigue damage to the unit,accompanied by difficulties in connecting to the grid and reductions in the power generation efficiency of renewable energy.However,there is limited research on the relationship between pressure fluctuations and the induced noise of Francis turbines during extreme operations.In the present study,an acoustic numerical simulation based on the Ffowcs Williams-Hawkings equation and large eddy simulation is used to analyze the acoustic performances of Francis turbines.In the current study,for evaluating the acoustic characteristics under such terrible conditions,the results of variable flow rate and guide vane opening conditions are compared.Results indicated that Francis turbine noise is mostly due to pressure fluctuations brought on by rotor-stator interference and corkscrew-shaped vortices.The blade passing frequency(BPF)of 130.00 Hz and the low frequency of 0.33 f_(n)(where f_(n)denotes the rotating frequency)are the key factors affecting pressure and noise fluctuations.The influence of low frequency is reduced as the flow rate rises,whereas the influence of BPF gradually increases.Besides,the hydrodynamic noise of Francis turbines is primarily low-frequency,with discrete and broad-band features.The rotating noise with distinct peak values and the turbulence noise produced by large-scale vortices(corkscrew-shaped vortices)make up the majority of low-frequency noise.Therefore,reducing pressure fluctuations is a key strategy for lowering flow-induced noise radiation. 展开更多
关键词 Francis turbine hydrodynamic noise pressure fluctuation vortex distribution large eddy simulation(LES)
原文传递
Large eddy simulation of a planar jet flow with nanoparticle coagulation 被引量:25
3
作者 Mingzhou Yu Jianzhong Lin +1 位作者 Lihua Chen Tatleung Chan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第4期293-300,共8页
Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate... Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate the nanoparticle general dynamic equa- tion. An incompressible fluid containing particles of 1 nm in diameter is projected into a particle-free ambient. The results show that the coherent structures dominate the evolution of the nanoparticle number intensity, diameter and polydispersity distributions as the jet develops. In addition, the coherent structures act to increase the diffusion of particles, and the vortex rolling-up makes the particles distributing more irregularly while the vortex pairing causes particle distributions to become uniform. As the jet travels downstream, the time-averaged particle number concentration becomes lower in the jet core and higher in the outskirts, whereas the time- averaged particle mass over the entire flow field maintains unaltered, and the time-averaged particle diameter and geometric standard deviations grow and reach their maximum on the interface of the jet region and the ambient. 展开更多
关键词 NANOPARTICLES COAGULATION Planar jet large eddy simulation Coherent structure
在线阅读 下载PDF
Large Eddy Simulations of Mixing Time in a Stirred Tank 被引量:17
4
作者 闵健 高正明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期1-7,共7页
Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with S... Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with Sma-gorinsky-Lilly subgrid scale model. The impeller rotation was modeled using the sliding mesh technique. Better agree-ment of power demand and mixing time was obtained between the experimental and the LES prediction than that by the traditional Reynolds-averaged Navier-Stokes (RANS) approach. The curve of tracer response predicted by LES was in good agreement with the experimental. The results show that LES is a reliable tool to investigate the unsteady and quasi-periodic behavior of the turbulent flow in stirred tanks. 展开更多
关键词 large eddy simulations subgrid scale model mixing time hydrofoil impeller
在线阅读 下载PDF
An improved large eddy simulation of two-phase flows in a pump impeller 被引量:10
5
作者 Xuelin Tang Fujun Wang Yulin Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第6期635-643,共9页
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating c... An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results. 展开更多
关键词 large eddy simulation Second-order sub-grid-scale stress model Turbulent two-phase flow Pump impeller
在线阅读 下载PDF
Large Eddy Simulation of Liquid Flow in a Stirred Tank with Improved Inner-Outer Iterative Algorithm 被引量:10
6
作者 张艳红 杨超 毛在砂 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期321-329,共9页
In this study, the large eddy simulation technique was applied on the flow in a baffled stirred tank driven by a Rushton turbine at Re=29000. The interaction between the rotating impeller and the static baffles was ac... In this study, the large eddy simulation technique was applied on the flow in a baffled stirred tank driven by a Rushton turbine at Re=29000. The interaction between the rotating impeller and the static baffles was accounted for by means of the improved inner-outer iterative algorithm. The sub-grid scale model was a conventional Smagorinsky model. The numerical solution of the governing equations was conducted in a cylindrical staggered grid. The momentum and the continuity equations were discretized using the finite difference method, with a third-order QUICK scheme used for convective terms. The phase-resolved predictions were compared with the experimental data of Wu and Patterson and good agreement was observed for both the mean and the turbulence quantities. They were much better than the Reynolds-averaged Navier-Stokes model including the Reynolds Stress Model for simulating the turbulence. The study also suggests the feasibility of LES in combination with the improved inner-outer iterative algorithm for the simulation of turbulent flow in stirred tanks. 展开更多
关键词 large eddy simulation stirred tank computational fluid dynamics (CFD) TURBULENCE
在线阅读 下载PDF
Numerical Study on Flow-induced Noise for a Steam Stop-valve Using Large Eddy Simulation 被引量:9
7
作者 Jiming Liu Tao Zhang Yong'ou Zhang 《Journal of Marine Science and Application》 2013年第3期351-360,共10页
The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field ... The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence. 展开更多
关键词 flow-induced noise steam stop-valve flow field sound field large eddy simulation(LES) computational fluid dynamics(CFD) ACTRAN
在线阅读 下载PDF
Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach 被引量:7
8
作者 Cao Changmin Ye Taohong Zhao Majie 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1316-1327,共12页
Large eddy simulations (LES) have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR). Turbulent combustion is mod- eled by the tabulated thermo-chemis... Large eddy simulations (LES) have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR). Turbulent combustion is mod- eled by the tabulated thermo-chemistry approach in combination with the presumed probability density function (PDF). A/3-function is used to model the distribution of the mixture fraction, while two different PDFs, g-function (Model I) and //-function (Model II), are applied to model the reaction progress. Temperature is obtained by solving filtered energy transport equation and the reaction rate of the progress variable is rescaled by pressure to consider the effects of compressibil- ity. The adaptive mesh refinement (AMR) technique is used to properly capture shock waves, boundary layers, shear layers and flame structures. Statistical results of temperature and velocity predicted by Model II show better accuracy than that predicted by Model I. The results of scatter points and mixture fraction-conditional variables indicate the significant differences between Model I and Model II. It is concluded that second moment information in the presumed PDF of the reaction progress is very important in the simulation of supersonic combustion. It is also found that an unstable flame with extinction and ignition develops in the shear layers of bluff body and a fuel- rich partially premixed flame stabilizes in the central recirculation bubble. 展开更多
关键词 large eddy simulation(LES) Presumed probability densityfunction (PDF) Scram jet Tabulated thermo-chemistry Turbulent combustion model
原文传递
Large eddy simulation of aircraft wake vortex with self-adaptive grid method 被引量:10
9
作者 Mengda LIN Guixiang CUI Zhaoshun ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1289-1304,共16页
A self-adaptive-grid method is applied to numerical simulation of the evolu- tion of aircraft wake vortex with the large eddy simulation (LES). The Idaho Falls (IDF) measurement of run 9 case is simulated numerica... A self-adaptive-grid method is applied to numerical simulation of the evolu- tion of aircraft wake vortex with the large eddy simulation (LES). The Idaho Falls (IDF) measurement of run 9 case is simulated numerically and compared with that of the field experimental data. The comparison shows that the method is reliable in the complex atmospheric environment with crosswind and ground effect. In addition, six cases with different ambient atmospheric turbulences and Brunt V^iis/il^i (BV) frequencies are com- puted with the LES. The main characteristics of vortex are appropriately simulated by the current method. The onset time of rapid decay and the descending of vortices are in agreement with the previous measurements and the numerical prediction. Also, sec-ondary structures such as baroclinic vorticity and helical structures are also simulated. Only approximately 6 million grid points are needed in computation with the present method, while the number can be as large as 34 million when using a uniform mesh with the same core resolution. The self-adaptive-grid method is proved to be practical in the numerical research of aircraft wake vortex. 展开更多
关键词 large eddy simulation (LES) aircraft wake vortex self-adaptive grid
在线阅读 下载PDF
A large eddy simulation of flows around an underwater vehicle model using an immersed boundary method 被引量:8
10
作者 Shizhao Wang Beiji Shi +1 位作者 Yuhang Li Guowei He 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第6期302-305,共4页
A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the ... A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles. 展开更多
关键词 Underwater vehicle SUBOFF Immersed boundary method large eddy simulation Adaptive mesh refinement
在线阅读 下载PDF
Large Eddy Simulation and Study of the Urban Boundary Layer 被引量:5
11
作者 苗世光 蒋维楣 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第4期650-661,共12页
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The... Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL. 展开更多
关键词 uniform underlying surface urban boundary layer planetary boundary layer large eddy simulation (LES) ANISOTROPY turbulent kinetic energy closure model
在线阅读 下载PDF
Large Eddy Simulations of Flow Instabilities in a Stirred Tank Gen-erated by a Rushton Turbine 被引量:4
12
作者 樊建华 王运东 费维扬 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第2期200-208,共9页
The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupli... The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupling between the rotating and the stationary frame of references. The calculations were carried out on the "Shengcao-21C" supercomputer using a computational fluid dynamics (CFD) code CFX5. The flow fields predicted by the LES simulation and the simulation using standard κ-ε model were compared to the results from particle image velocimetry (PIV) measurements. It is shown that the CFD simulations using the LES approach and the standard κ-ε model agree well with the PIV measurements. Fluctuations of the radial and axial velocity are predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies are seen in the impeller region, while low frequencies velocity fluctuations are observed in the bulk flow. A low frequency velocity fluctuation with a nondimensional frequency of 0.027Hz is predicted by the LES simulation, which agrees with experimental investigations in the literature. Flow circulation patterns predicted by the LES simulation are asymmetric, stochastic and complex, spanning a large portion of the tanks and varying with time, while circulation patterns calculated by the simulation using the standard κ-ε model are symmetric. The results of the present work give better understanding to the flow instabilities in the mechanically agitated tank. However, further analysis of the LES calculated velocity series by means of fast Fourier transform (FFT) and/or spectra analysis are recommended in future work in order to gain more knowledge of the complicated flow phenomena. 展开更多
关键词 stirred tank flow instabilities computational fluid dynamics large eddy simulation κ-ε model particle image velocimetry
在线阅读 下载PDF
Large Eddy Simulation of the Effects of Plasma Actuation Strength on Film Cooling Efficiency 被引量:4
13
作者 LI Guozhan CHEN Fu +1 位作者 LI Linxi SONG Yanping 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第11期1101-1109,共9页
In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical resea... In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical research, the plasma actuator is placed downstream of the trailing edge of the film cooling hole and a phenomenological model is employed to provide the electric field generated by it, resulting in the body forces. Our results show that as the plasma actuation strength grows larger, under the downward effect of the plasma actuation, the jet trajectory near the cooling hole stays closer to the wall and the recirculation region observably reduces in size. Meanwhile, the momentum injection effect of the plasma actuation also actively alters the distributions of the velocity components downstream of the cooling hole. Consequently, the influence of the plasma actuation strength on the Reynolds stress downstream of the cooling hole is remarkable. Furthermore, the plasma actuation weakens the strength of the kidney shaped vortex and prevents the jet from lifting off the wall. Therefore, with the increase of the strength of the plasma actuation, the coolant core stays closer to the wall and tends to split into two distinct regions. So the centerline film cooling efficiency is enhanced, and it is increased by 55% at most when the plasma actuation strength is 10. 展开更多
关键词 large eddy simulation plasma actuation strength film cooling flow characteristic
在线阅读 下载PDF
Large Eddy Simulation for Unsteady Turbulent Field in Thin Slab Continuous Casting Mold 被引量:3
14
作者 Fumitaka Tsukihashi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S2期243-250,共8页
The unsteady turbulent flow during the continuous casting of steel is important, because it influences critical phenomena that affect steel quality. Unsteady three-dimensional flow in the mold region of the liquid poo... The unsteady turbulent flow during the continuous casting of steel is important, because it influences critical phenomena that affect steel quality. Unsteady three-dimensional flow in the mold region of the liquid pool during continuous casting of steel slabs has been computed using realistic geometries starting from the submerged inlet nozzle to the mold. The cassette filter function was used to deal with unsteady Navier-Stokes equation, and then the turbulent flow in the thin slab CCM was simulated with the large eddy simulation method combined with the Smagorinsky sub-grid scale model in this paper. And the model was verified by the Particle Image Velocimetry (PIV) experimental results which was got from a relate scientific literature. In this thesis, by means of LES, the flow characteristics in the thin slab CCM were acquired, such as the vortex distribution, the formation of the large eddy coherent structures, development, shedding and fracture process. In the same time, the turbulent asymmetric distribution was revealed even the nozzle in the centre position. Interactions between the two halves cause large velocity fluctuations near the meniscus. And the vortex is located at the low velocity side adjacent to the SEN. Along with the unsteady time development, the unsteady turbulent large vortex structures of the liquid steel in the CCM presented periodic bias flow distribution, and the period is about 20 seconds. 展开更多
关键词 continuous casting mold UNSTEADY large eddy simulation VORTEX coherent structures
原文传递
Large Eddy Simulation of Particle Wake Effect and RANS Simulation of Turbulence Modulation in Gas-Particle Flows 被引量:4
15
作者 曾卓雄 周力行 祁海鹰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期12-16,共5页
The turbulence enhancement by particle wake effect is studied by large eddy simulation (LES) of turbulent gas flows passing a single particle. The predicted time-averaged and root-mean-square fluctuation velocities ... The turbulence enhancement by particle wake effect is studied by large eddy simulation (LES) of turbulent gas flows passing a single particle. The predicted time-averaged and root-mean-square fluctuation velocities behind the particle are in agreement with the Reynolds-averaged Navier-Stokes modeling results and experimental results. A semi-empirical turbulence enhancement model is proposed by the present-authors based on the LES resuits. This model is incorporated into the second-order moment two-phase turbulence model for simulating vertical gas-particle pipe flows and horizontal gas-particle channel flows. The simulation results show that compared with the model not accounting for the particle wake effect, the present model gives simulation results for the gas turbulence modulation in much better agreement with the experimental results. 展开更多
关键词 large eddy simulation gas-particle flow turbulence modulation
在线阅读 下载PDF
Simulation of Surface Wave with Large Eddy Simulation in σ-Coordinate System 被引量:4
16
作者 王玲玲 《海洋工程:英文版》 2004年第3期413-422,共10页
A three dimensional numerical model in the σ coordinate system is developed to study the problem of waves. Turbulence effects are modeled by a subgrid scale (SGS) model with the concept of large eddy simulatio... A three dimensional numerical model in the σ coordinate system is developed to study the problem of waves. Turbulence effects are modeled by a subgrid scale (SGS) model with the concept of large eddy simulation (LES). The σ coordinate transformation is introduced to map the irregular physical domain of the wavy free surface and uneven bottom onto the regular computational domain of the shape of rectangular prism. The operator splitting method, which splits the solution procedure into the advection, diffusion, and propagation steps, is used to solve the modified Navier Stokes Equation. The model is used to simulate the propagation of solitary wave and wave passing over a submerged breakwater. Numerical results are compared with available analytical solutions and experimental data in terms of velocity profiles, free surface displacement, and energy conservation. Good agreement is obtained. The method is proved to be of high accuracy and efficiency in simulating surface wave propagation and wave structure interaction. It is suitable for the large and irregular physical domain, and requiring the non uniform grid system. The present work provides a foundation for further studies of random waves, wave structure interaction, wave discharge interaction, etc. 展开更多
关键词 large eddy simulation σ coordinate solitary wave BREAKWATER
在线阅读 下载PDF
Fourier neural operator approach to large eddy simulation of three-dimensional turbulence 被引量:3
17
作者 Zhijie Li Wenhui Peng +1 位作者 Zelong Yuan Jianchun Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第6期438-444,共7页
Fourier neural operator(FNO)model is developed for large eddy simulation(LES)of three-dimensional(3D)turbulence.Velocity fields of isotropic turbulence generated by direct numerical simulation(DNS)are used for trainin... Fourier neural operator(FNO)model is developed for large eddy simulation(LES)of three-dimensional(3D)turbulence.Velocity fields of isotropic turbulence generated by direct numerical simulation(DNS)are used for training the FNO model to predict the filtered velocity field at a given time.The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag.In the a posteriori study of LES,the FNO model performs better than the dynamic Smagorinsky model(DSM)and the dynamic mixed model(DMM)in the prediction of the velocity spectrum,probability density functions(PDFs)of vorticity and velocity increments,and the instantaneous flow structures.Moreover,the proposed model can significantly reduce the computational cost,and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers. 展开更多
关键词 Fourier neural operator large eddy simulation Data-driven simulation Incompressible turbulence
在线阅读 下载PDF
Large eddy simulation of vertical turbulent jets under JONSWAP waves 被引量:2
18
作者 Jun Lu Ling-Ling Wang +1 位作者 Hong-Wu Tang Hui-Chao Dai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期189-199,共11页
The effect of random waves on vertical plane turbulent jets is studied numerically and the mechanism behind the interaction of the jet and waves is analyzed. The large eddy simulation method is used and the σ-coordin... The effect of random waves on vertical plane turbulent jets is studied numerically and the mechanism behind the interaction of the jet and waves is analyzed. The large eddy simulation method is used and the σ-coordinate system is adopted. Turbulence is modeled by a dynamic coherent eddy model. The σ-coordinate transformation is introduced to map the irregular physical domain with a wavy free surface and an uneven bottom onto a regular computational domain. The fractional step method is used to solve the filtered Navier–Stokes equations. Results presented include the distribution of velocity, the decay law of the mean velocity along the jet axis, self-similar characteristics and volume flux per unit width. In particular, the role of coherent structures on the momentum transfer along the jet centerline and the jet instantaneous characteristics in JONSWAP waves are a special focus of this research. The numerical results obtained are of great theoretical importance in understanding the behavior of turbulent jets in random wave environments. 展开更多
关键词 large eddy simulation Dynamic coherent eddy model Σ-COORDINATE Turbulent jet JONSWAP wave
在线阅读 下载PDF
Large eddy simulation study of 3D wind field in a complex mountainous area under different boundary conditions 被引量:2
19
作者 Yan LI Lei YAN Xuhui HE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第7期541-556,共16页
Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the c... Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the characteristics of inflow turbulence,can significantly impact the quality of predictions.In this study,we examined these boundary conditions within the context of the mountainous terrain around a long-span cable-stayed bridge using a wind tunnel experiment.Various sizes of computational domains and turbulent incoming wind velocities were used in large eddy simulations.The results show that when the height of the computational domain is five times greater than the height of the terrain model,there is minimal influence from the top wall on the wind field characteristics in this complex mountainous area.Expanding the length of the wake region of the computational domain has negligible effects on the wind fields.Turbulence in the inlet boundary reduces the length of the wake region on a leeward hill with a low slope,but has less impact on the mean wind velocity of steep hills. 展开更多
关键词 large eddy simulation(LES) Spectral representation method Recycling method High mountainous canyon Wind characteristics Atmospheric boundary layer Computational domain
原文传递
Large eddy simulation of turbulence in ocean surface boundary layer at Zhangzi Island offshore 被引量:2
20
作者 LI Shuang SONG Jinba +1 位作者 HE Hailun HUANG Yansong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第7期8-13,共6页
This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°... This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°E) during July 2009 are used to drive the LES model. The LES results capture a clear diurnal cycle in the oceanic turbulence boundary layer. The process of the heat penetration and heat distribution characteristics are analyzed through the heat flux results from the LES and their differences between two diurnal cycles are discussed as well. Energy balance and other dynamics are investigated which show that the tide-induced shear production is the main source of the turbulence energy that balanced dissipation. Momentum flux near the surface shows better agreement with atmospheric data computed by the eddy correlation method than those computed by bulk formula. 展开更多
关键词 ocean surface boundary layer large eddy simulation TURBULENCE momentum flux heat flux
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部