The measurement of trace elements in Antarctic snow is crucial for understanding historical atmospheric geochemical changes and circulation patterns.However,studies on their spatial distributions remain limited,partic...The measurement of trace elements in Antarctic snow is crucial for understanding historical atmospheric geochemical changes and circulation patterns.However,studies on their spatial distributions remain limited,particularly those evaluating multiple metals across several snowpits,making interpretation challenging.This study investigates the distributions and sources of trace elements-including Cd,Ba,Pb,U,Bi,V,Mn,Fe,Cu,Zn,and As-across four snowpits in the Lambert Glacier Basin,East Antarctica.The trace elements exhibit site-,element-,and season-dependent variations,with higher concentrations observed at inland sites.In contrast,δ^(18)O and ion concentrations decrease with increasing distance from the coast and elevation,underscoring the influence of marine emissions.Crustal sources primarily contributed to Ba,U,V,Mn,and Fe,while non-crustal sources predominantly contributed to Cd,Bi,Zn,Pb,Cu,and As.Positive matrix factorization(PMF)analysis indicates that trace element concentrations in Pits 2 and 3 are influenced by both crustal and non-crustal sources,while Pit 4 reflects a mixed-source influence.Pit 1(coastal site)also indicates the mixed sources with influence of a highly dynamic marine climate and environment.The PMF results reveal similarities in emission sources and atmospheric transport patterns across the snowpits,facilitating a more comprehensive interpretation of longer ice core records.Overall,this study provides valuable insights into trace element distributions and enhances our understanding of past environmental and climatic conditions.展开更多
基金supported by the Korea Polar Research Institute grant(PE25100)the National Research Foundation of Korea grant funded by the Korean Government(NRF2022R1A2C3007047)supported by Korea Institute of Marine Science&Technology Promotion(KIMST)and by the Ministry of Oceans and Fisheries(RS-2023-00256677,PM23020).
文摘The measurement of trace elements in Antarctic snow is crucial for understanding historical atmospheric geochemical changes and circulation patterns.However,studies on their spatial distributions remain limited,particularly those evaluating multiple metals across several snowpits,making interpretation challenging.This study investigates the distributions and sources of trace elements-including Cd,Ba,Pb,U,Bi,V,Mn,Fe,Cu,Zn,and As-across four snowpits in the Lambert Glacier Basin,East Antarctica.The trace elements exhibit site-,element-,and season-dependent variations,with higher concentrations observed at inland sites.In contrast,δ^(18)O and ion concentrations decrease with increasing distance from the coast and elevation,underscoring the influence of marine emissions.Crustal sources primarily contributed to Ba,U,V,Mn,and Fe,while non-crustal sources predominantly contributed to Cd,Bi,Zn,Pb,Cu,and As.Positive matrix factorization(PMF)analysis indicates that trace element concentrations in Pits 2 and 3 are influenced by both crustal and non-crustal sources,while Pit 4 reflects a mixed-source influence.Pit 1(coastal site)also indicates the mixed sources with influence of a highly dynamic marine climate and environment.The PMF results reveal similarities in emission sources and atmospheric transport patterns across the snowpits,facilitating a more comprehensive interpretation of longer ice core records.Overall,this study provides valuable insights into trace element distributions and enhances our understanding of past environmental and climatic conditions.