To study a form invariance of Lagrange system, the form invariance of Lagrange equations under the infinitesimal transformations was used. The definition and criterion for the form invariance are given. The relati...To study a form invariance of Lagrange system, the form invariance of Lagrange equations under the infinitesimal transformations was used. The definition and criterion for the form invariance are given. The relation between the form invariance and the Noether symmetry was established.展开更多
Based on the invariance of differential equations under infinitesimal transformations of group, Lie symmetries, exact invariants, perturbation to the symmetries and adiabatic invariants in form of non-Noether for a La...Based on the invariance of differential equations under infinitesimal transformations of group, Lie symmetries, exact invariants, perturbation to the symmetries and adiabatic invariants in form of non-Noether for a Lagrange system are presented. Firstly, the exact invariants of generalized Hojman type led directly by Lie symmetries for a Lagrange system without perturbations are given. Then, on the basis of the concepts of Lie symmetries and higher order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for the system with the action of small disturbance is investigated, the adiabatic invariants of generalized Hojman type for the system are directly obtained, the conditions for existence of the adiabatic invariants and their forms are proved. Finally an example is presented to illustrate these results.展开更多
In this paper the conformal invariance by infinitesimal transformations of first order Lagrange systems is discussed in detail. The necessary and sufficient conditions of conformal invariance and Lie symmetry simultan...In this paper the conformal invariance by infinitesimal transformations of first order Lagrange systems is discussed in detail. The necessary and sufficient conditions of conformal invariance and Lie symmetry simultaneously by the action of infinitesimal transformations are given. Then it gets the Hojman conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.展开更多
This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions o...This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an example is given to illustrate the application of the result.展开更多
This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, ...This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, a coordination function is introduced, and the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an illustrated example is given. The result indicates that the coordination function can be selected properly according to the demand for finding the gauge function, and thereby the gauge function can be found more easily. Furthermore, since the choice of the coordination function has multiformity, many more conserved quantities of Mei symmetry for the Lagrange system can be obtained.展开更多
This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infini...This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infinitesimal point transformations being Lie symmetric simultaneously. Then the Noether conserved quantities of conformal invariance are obtained. Finally an illustrative example is given to verify the results.展开更多
Based on the concept of adiabatic invariant, perturbation to Lie symmetry and Lutzky adiabatic invariants for Lagrange systems are studied by using different methods from those of previous works. Exact invariants indu...Based on the concept of adiabatic invariant, perturbation to Lie symmetry and Lutzky adiabatic invariants for Lagrange systems are studied by using different methods from those of previous works. Exact invariants induced from Lie symmetry of the system without perturbation are given. Perturbation to Lie symmetry is discussed and Lutzky adiabatic invariants of the system subject to perturbation are obtained.展开更多
This paper studies the Hojman conserved quantity, a non-Noether conserved quantity, deduced by special weak Noether symmetry for Lagrange systems. Under special infinitesimal transformations in which the time is not v...This paper studies the Hojman conserved quantity, a non-Noether conserved quantity, deduced by special weak Noether symmetry for Lagrange systems. Under special infinitesimal transformations in which the time is not variable, its criterion is given and a method of how to seek the Hojman conserved quantity is presented. A Hojman conserved quantity can be found by using the special weak Noether symmetry.展开更多
A new type of conserved quantity, which is induced from the Mei symmetry of Lagrange systems, is studied. The conditions for that the new type of conserved quantity exists and the form of the new type of conserved qua...A new type of conserved quantity, which is induced from the Mei symmetry of Lagrange systems, is studied. The conditions for that the new type of conserved quantity exists and the form of the new type of conserved quantity are obtained. An illustrated example is given. The Noether conserved quantity induced from the Mei symmetry of Lagrange systems is a special case of the new type of conserved quantity given in this paper.展开更多
In this paper, Noether theory of Lagrange systems in discrete case are studied. First, we briefly overview the wellknown Noether theory of Lagrange system in the continuous case. Then, we introduce some definitions an...In this paper, Noether theory of Lagrange systems in discrete case are studied. First, we briefly overview the wellknown Noether theory of Lagrange system in the continuous case. Then, we introduce some definitions and notations, such as the operators of discrete translation to the right and the left and the operators of discrete differentiation to the right and the left, and give the conditions for the invariance of the difference functional on the uniform lattice and the non-uniform one, respectively. We also deduce the discrete analog of the Noether-type identity. Finally, the discrete analog of Noether's theorem is presented. An example was discussed to illustrate these results.展开更多
In this paper the conformal invariance by infinitesimal transformations of first-order Lagrange systems is discussed in detail. The necessary and sumeient conditions of conformal invariance by the action of infinitesi...In this paper the conformal invariance by infinitesimal transformations of first-order Lagrange systems is discussed in detail. The necessary and sumeient conditions of conformal invariance by the action of infinitesimal transformations being Lie symmetry simultaneously are given. Then we get the conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.展开更多
This paper is concerned with chaotification of discrete Lagrange systems in one dimension, via feedback control techniques. A chaotification theorem for discrete Lagrange systems is established. The controlled systems...This paper is concerned with chaotification of discrete Lagrange systems in one dimension, via feedback control techniques. A chaotification theorem for discrete Lagrange systems is established. The controlled systems are proved to be chaotic in the sense of Devaney. In particular, the systems corresponding to the original systems and designed controllers are only required to satisfy, some mild assumptions.展开更多
The tracking control for multiple Euler-Lagrange systems with external disturbances in finite time under undirected topology is investigated in this paper.A dynamic model is established for the multi-EL systems to acc...The tracking control for multiple Euler-Lagrange systems with external disturbances in finite time under undirected topology is investigated in this paper.A dynamic model is established for the multi-EL systems to accurately describe the general mechanical system.Furthermore,an integral terminal sliding mode surface is devised to converge the tracking errors of the system state to a neighborhood of zero within finite time,and the designed finite-time controller ensures fast convergence and high steady-state accuracy.To reduce the controller update frequency and network transmission communication load,a dynamic event-triggered mechanism is introduced between the sensor and controller,and no Zeno behavior was observed.Therefore,the Lyapunov stability theory and finite-time stability criterion prove that all signals in the closed-loop system are uniformly ultimately bounded in finite time.Finally,the simulation results verified the effectiveness of the proposed control method.展开更多
This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, ba...This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.展开更多
文摘To study a form invariance of Lagrange system, the form invariance of Lagrange equations under the infinitesimal transformations was used. The definition and criterion for the form invariance are given. The relation between the form invariance and the Noether symmetry was established.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472040 and 10372053), the Natural Science Foundation of Hunan Province, China (Grant No 03JJY3005), the Natural Science Foundation of Henan Province, China (Grant No 0311010900), the 0utstanding Young Talents Training Fund of Liaoning Province, China (Grant No 3040005) and the Foundation of Young Key Member of the teachers in Institutions of Higher Learning of Henan Province of China.
文摘Based on the invariance of differential equations under infinitesimal transformations of group, Lie symmetries, exact invariants, perturbation to the symmetries and adiabatic invariants in form of non-Noether for a Lagrange system are presented. Firstly, the exact invariants of generalized Hojman type led directly by Lie symmetries for a Lagrange system without perturbations are given. Then, on the basis of the concepts of Lie symmetries and higher order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for the system with the action of small disturbance is investigated, the adiabatic invariants of generalized Hojman type for the system are directly obtained, the conditions for existence of the adiabatic invariants and their forms are proved. Finally an example is presented to illustrate these results.
基金supported by the National Natural Science Foundation of China (Grant Nos 10372053,10572021 and 10772025)the National Natural Science Foundation of Henan province of China(Grant No 0311010900)
文摘In this paper the conformal invariance by infinitesimal transformations of first order Lagrange systems is discussed in detail. The necessary and sufficient conditions of conformal invariance and Lie symmetry simultaneously by the action of infinitesimal transformations are given. Then it gets the Hojman conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.
文摘This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an example is given to illustrate the application of the result.
文摘This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, a coordination function is introduced, and the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an illustrated example is given. The result indicates that the coordination function can be selected properly according to the demand for finding the gauge function, and thereby the gauge function can be found more easily. Furthermore, since the choice of the coordination function has multiformity, many more conserved quantities of Mei symmetry for the Lagrange system can be obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472040, 10572021 and 10772025)the Outstanding Young Talents Training Found of Liaoning Province of China (Grant No 3040005)
文摘This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infinitesimal point transformations being Lie symmetric simultaneously. Then the Noether conserved quantities of conformal invariance are obtained. Finally an illustrative example is given to verify the results.
文摘Based on the concept of adiabatic invariant, perturbation to Lie symmetry and Lutzky adiabatic invariants for Lagrange systems are studied by using different methods from those of previous works. Exact invariants induced from Lie symmetry of the system without perturbation are given. Perturbation to Lie symmetry is discussed and Lutzky adiabatic invariants of the system subject to perturbation are obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022)
文摘This paper studies the Hojman conserved quantity, a non-Noether conserved quantity, deduced by special weak Noether symmetry for Lagrange systems. Under special infinitesimal transformations in which the time is not variable, its criterion is given and a method of how to seek the Hojman conserved quantity is presented. A Hojman conserved quantity can be found by using the special weak Noether symmetry.
文摘A new type of conserved quantity, which is induced from the Mei symmetry of Lagrange systems, is studied. The conditions for that the new type of conserved quantity exists and the form of the new type of conserved quantity are obtained. An illustrated example is given. The Noether conserved quantity induced from the Mei symmetry of Lagrange systems is a special case of the new type of conserved quantity given in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.10872037)the Natural Science Foundationof Anhui Province,China(Grant No.070416226)
文摘In this paper, Noether theory of Lagrange systems in discrete case are studied. First, we briefly overview the wellknown Noether theory of Lagrange system in the continuous case. Then, we introduce some definitions and notations, such as the operators of discrete translation to the right and the left and the operators of discrete differentiation to the right and the left, and give the conditions for the invariance of the difference functional on the uniform lattice and the non-uniform one, respectively. We also deduce the discrete analog of the Noether-type identity. Finally, the discrete analog of Noether's theorem is presented. An example was discussed to illustrate these results.
基金supported by National Natural Science Foundation of China under Grant Nos.10472040,10572021,and 10772025the Outstanding Young Talents Training Fund of Liaoning Province of China under Grant No.3040005
文摘In this paper the conformal invariance by infinitesimal transformations of first-order Lagrange systems is discussed in detail. The necessary and sumeient conditions of conformal invariance by the action of infinitesimal transformations being Lie symmetry simultaneously are given. Then we get the conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.
基金The project supported by National Natural Science Foundation of China under Grant No. 10272021
文摘This paper is concerned with chaotification of discrete Lagrange systems in one dimension, via feedback control techniques. A chaotification theorem for discrete Lagrange systems is established. The controlled systems are proved to be chaotic in the sense of Devaney. In particular, the systems corresponding to the original systems and designed controllers are only required to satisfy, some mild assumptions.
基金supported by the National Natural Science Foundation of China(Grant Nos.62121004,62033003,62003098,62103111,and 62303125)the Local Innovative and Research Teams Project of Guangdong Special Support Program(Grant No.2019BT02X353)+2 种基金the China Postdoctoral Science Foundation(Grant Nos.2021TQ0079 and 2021M700883)the Natural Science Foundation of Guangdong Province(Grant Nos.2023A1515011527 and 2022A1515011506)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515010855 and 2022A1515110949)。
文摘The tracking control for multiple Euler-Lagrange systems with external disturbances in finite time under undirected topology is investigated in this paper.A dynamic model is established for the multi-EL systems to accurately describe the general mechanical system.Furthermore,an integral terminal sliding mode surface is devised to converge the tracking errors of the system state to a neighborhood of zero within finite time,and the designed finite-time controller ensures fast convergence and high steady-state accuracy.To reduce the controller update frequency and network transmission communication load,a dynamic event-triggered mechanism is introduced between the sensor and controller,and no Zeno behavior was observed.Therefore,the Lyapunov stability theory and finite-time stability criterion prove that all signals in the closed-loop system are uniformly ultimately bounded in finite time.Finally,the simulation results verified the effectiveness of the proposed control method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 10672143)
文摘This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.