This paper considers to replace △_m(x)=(1-x^2)~2(1/2)/n +1/n^2 in the following result for simultaneous Lagrange interpolating approximation with (1-x^2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then |f^(k)(x)-P_^...This paper considers to replace △_m(x)=(1-x^2)~2(1/2)/n +1/n^2 in the following result for simultaneous Lagrange interpolating approximation with (1-x^2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then |f^(k)(x)-P_^(k)(f,x)|=O(1)△_(n)^(a-k)(x)ω(f^(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q, where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_n U Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.展开更多
This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of...This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).展开更多
Here we discuss some phenomena of equiconvergence for the functions analytic inside the lemniscate. A quantitative estimate of sequences of differences between the Jacobi polynomials and Lagrange interpolants and some...Here we discuss some phenomena of equiconvergence for the functions analytic inside the lemniscate. A quantitative estimate of sequences of differences between the Jacobi polynomials and Lagrange interpolants and some other results are obtained.展开更多
In this paper,an optimality condition for nonlinear programming problems with box constraints is given by using linear transformation and Lagrange interpolating polynomials.Based on this condition,two new local optim...In this paper,an optimality condition for nonlinear programming problems with box constraints is given by using linear transformation and Lagrange interpolating polynomials.Based on this condition,two new local optimization methods are developed.The solution points obtained by the new local optimization methods can improve the Karush–Kuhn–Tucker(KKT)points in general.Two global optimization methods then are proposed by combining the two new local optimization methods with a filled function method.Some numerical examples are reported to show the effectiveness of the proposed methods.展开更多
This paper focuses on applying the barycentric Lagrange interpolation collocation method(BLICM)for solving 2D time-fractional diffusion-wave equation(TFDWE).In order to obtain the discrete format of the equation,we co...This paper focuses on applying the barycentric Lagrange interpolation collocation method(BLICM)for solving 2D time-fractional diffusion-wave equation(TFDWE).In order to obtain the discrete format of the equation,we construct the multivariate barycentric Lagrange interpolation approximation function and process the integral terms by using the Gauss-Legendre quadrature formula.We provide a detailed error analysis of the discrete format on the second kind of Chebyshev nodes.The efficacy of the proposed method is substantiated by some numerical experiments.The results of these experiments demonstrate that our method can obtain high-precision numerical solutions for fractional partial differential equations.Additionally,the method's capability to achieve high precision with a reduced number of nodes is confirmed.展开更多
The traditional train positioning methods suffer from inadequate accuracy and high maintenance costs,rendering them unsuitable for the development requirements of lightweight and intelligent train positioning technolo...The traditional train positioning methods suffer from inadequate accuracy and high maintenance costs,rendering them unsuitable for the development requirements of lightweight and intelligent train positioning technology.To address these restraints,the BeiDou navigation satellite system/strapdown inertial navigation system(BDS/SINS)integrated train positioning system based on an adaptive unscented Kalman filter(AUKF)is proposed.Firstly,the combined denoising algorithm(CDA)and Lagrange interpolation algorithm are introduced to preprocess the original data,effectively eliminating the influence of noise signals and abnormal measurements on the train positioning system.Secondly,the innovation theory is incorporated into the unscented Kalman filter(UKF)to derive the AUKF,which accomplishes an adaptive update of the measurement noise covariance.Finally,the positioning performance of the proposed AUKF is contrasted with that of conventional algorithms in various operation scenes.Simulation results demonstrate that the average value of error calculated by AUKF is less than 1.5 m,and the success rate of positioning touches 95.0%.Compared to Kalman filter(KF)and UKF,AUKF exhibits superior accuracy and stability in train positioning.Consequently,the proposed AUKF is well-suited for providing precise positioning services in variable operating environments for trains.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its...Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its performance.The proposed algorithm employs a self-adaptive parameter setting,Lagrange interpolation formula,and a new local search strategy embedded with Levy flight search to enhance its searching ability to make a better trade-off between exploration and exploitation.Also,the fragrance generation scheme of BOA is modified,which leads for exploring the domain effectively for better searching.To evaluate the performance,it has been applied to solve the IEEE CEC 2017 benchmark suite.The results have been compared to that of six state-of-the-art algorithms and five BOA variants.Moreover,various statistical tests,such as the Friedman rank test,Wilcoxon rank test,convergence analysis,and complexity analysis,have been conducted to justify the rank,significance,and complexity of the proposed mLBOA.Finally,the mLBOA has been applied to solve three real-world engineering design problems.From all the analyses,it has been found that the proposed mLBOA is a competitive algorithm compared to other popular state-of-the-art algorithms and BOA variants.展开更多
S.M.Lozinskii proved the exact convergence rate at the zero of Lagrange interpolation polynomials to |x| based on equidistant nodes in [-1,1]. In 2000, M. Rever generalized S.M.Lozinskii's result to |x|α(0 <≤...S.M.Lozinskii proved the exact convergence rate at the zero of Lagrange interpolation polynomials to |x| based on equidistant nodes in [-1,1]. In 2000, M. Rever generalized S.M.Lozinskii's result to |x|α(0 <≤ α≤ 1). In this paper we will present the exact rate of convergence at the point zero for the interpolants of |x|α1(1 < α < 2)..展开更多
It is a classical result of Bernstein that the sequence of Lagrange interpolation polynomials to \x\ at e-qually spaced nodes in [-1.1] diverges everywhere. except at zero and the end-points. In this paper we show tha...It is a classical result of Bernstein that the sequence of Lagrange interpolation polynomials to \x\ at e-qually spaced nodes in [-1.1] diverges everywhere. except at zero and the end-points. In this paper we show that the sequence of Lagrange interpolation polynomials corresponding to the functions which possess better smoothness on equidistant nodes in [-1.1] still diverges every -where in the interval except at zero and the end-points.展开更多
It is a classical result of Bernstein that the sequence of Lagrange interpolation polumomials to |x| at equally spaced nodes in [-1, 1] diverges everywhere, except at zero and the end-points. In the present paper, t...It is a classical result of Bernstein that the sequence of Lagrange interpolation polumomials to |x| at equally spaced nodes in [-1, 1] diverges everywhere, except at zero and the end-points. In the present paper, toe prove that the sequence of Lagrange interpolation polynomials corresponding to |x|^α (2 〈 α 〈 4) on equidistant nodes in [-1, 1] diverges everywhere, except at zero and the end-points.展开更多
This paper shows that the sequence of Lagrange interpolation polynomials corresponding to the rune tion f(z) =|x|^α(1〈α〈2) on [-1,1] can diverge everywhere in the interval except at zero and the end-points.
In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α wit...In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α with on equally展开更多
Properties of Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynom...Properties of Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynomials. Moreover, an integral expression of Lebesgue function is also obtained and the asymptotic behavior of Lebesgue constant is studied.展开更多
We study the optimal order of approximation for |x|α (0 < α < 1) by Lagrange interpolation polynomials based on Chebyshev nodes of the first kind. It is proved that the Jackson order of approximation is attained.
In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is appli...In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is applied to treat the spatial variables and their partial derivatives,and the collocation method for solving the second order differential equations is established.Secondly,the differential matrix is used to simplify the given differential equations on a given test node.Finally,based on three kinds of test nodes,numerical experiments show that the present scheme can not only calculate the high wave numbers problems,but also calculate the variable wave numbers problems.In addition,the algorithm has the advantages of high calculation accuracy,good numerical stability and less time consuming.展开更多
In this paper, we investigate the negative extremums of fundamental functions of Lagrange interpolation based on Chebyshev nodes. Moreover, we establish some companion results to the theorem of J. Szabados on the posi...In this paper, we investigate the negative extremums of fundamental functions of Lagrange interpolation based on Chebyshev nodes. Moreover, we establish some companion results to the theorem of J. Szabados on the positive extremum.展开更多
This paper investigates the optimal Lagrange interpolation of a class F∞of infinitely differentiable functions on[-1,1]in L_(∞)[-1,1]and weighted spaces L_(p,ω)[-1,1],1≤p<∞withωa continuous integrable weight ...This paper investigates the optimal Lagrange interpolation of a class F∞of infinitely differentiable functions on[-1,1]in L_(∞)[-1,1]and weighted spaces L_(p,ω)[-1,1],1≤p<∞withωa continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation polynomials based on the zeros of polynomials with the leading coefficient 1 of the least deviation from zero in L_(p,ω)[-1,1]are optimal for 1≤p<∞.We also give the optimal Lagrange interpolation nodes when the endpoints are included in the nodes.展开更多
We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, ...We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.展开更多
In this paper, we obtain a properly posed set of nodes for interpolation on a sphere. Moreover it is applied to construct properly posed set of nodes for Lagrange interpolation on the trivariate polynomial space of to...In this paper, we obtain a properly posed set of nodes for interpolation on a sphere. Moreover it is applied to construct properly posed set of nodes for Lagrange interpolation on the trivariate polynomial space of total degree n.展开更多
文摘This paper considers to replace △_m(x)=(1-x^2)~2(1/2)/n +1/n^2 in the following result for simultaneous Lagrange interpolating approximation with (1-x^2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then |f^(k)(x)-P_^(k)(f,x)|=O(1)△_(n)^(a-k)(x)ω(f^(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q, where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_n U Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.
基金The second named author was supported in part by an NSERC Postdoctoral Fellowship,Canada and a CR F Grant,University of Alberta
文摘This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).
文摘Here we discuss some phenomena of equiconvergence for the functions analytic inside the lemniscate. A quantitative estimate of sequences of differences between the Jacobi polynomials and Lagrange interpolants and some other results are obtained.
基金the National Natural Science Foundation of China(No.11471062).
文摘In this paper,an optimality condition for nonlinear programming problems with box constraints is given by using linear transformation and Lagrange interpolating polynomials.Based on this condition,two new local optimization methods are developed.The solution points obtained by the new local optimization methods can improve the Karush–Kuhn–Tucker(KKT)points in general.Two global optimization methods then are proposed by combining the two new local optimization methods with a filled function method.Some numerical examples are reported to show the effectiveness of the proposed methods.
基金Supported by the Scientific Research Foundation for Talents Introduced of Guizhou University of Finance and Economics(Grant No.2023YJ16)the Institute of Complexity Science,Henan University of Technology(Grant No.CSKFJJ-2025-33)the International Science and Technology Cooperation Project of Henan Province(Grant No.252102520007).
文摘This paper focuses on applying the barycentric Lagrange interpolation collocation method(BLICM)for solving 2D time-fractional diffusion-wave equation(TFDWE).In order to obtain the discrete format of the equation,we construct the multivariate barycentric Lagrange interpolation approximation function and process the integral terms by using the Gauss-Legendre quadrature formula.We provide a detailed error analysis of the discrete format on the second kind of Chebyshev nodes.The efficacy of the proposed method is substantiated by some numerical experiments.The results of these experiments demonstrate that our method can obtain high-precision numerical solutions for fractional partial differential equations.Additionally,the method's capability to achieve high precision with a reduced number of nodes is confirmed.
基金supported by Project Fund of China National Railway Group Co.,Ltd.(No.N2022G012)Natonal Natural Science Foundation of China(No.61661027)。
文摘The traditional train positioning methods suffer from inadequate accuracy and high maintenance costs,rendering them unsuitable for the development requirements of lightweight and intelligent train positioning technology.To address these restraints,the BeiDou navigation satellite system/strapdown inertial navigation system(BDS/SINS)integrated train positioning system based on an adaptive unscented Kalman filter(AUKF)is proposed.Firstly,the combined denoising algorithm(CDA)and Lagrange interpolation algorithm are introduced to preprocess the original data,effectively eliminating the influence of noise signals and abnormal measurements on the train positioning system.Secondly,the innovation theory is incorporated into the unscented Kalman filter(UKF)to derive the AUKF,which accomplishes an adaptive update of the measurement noise covariance.Finally,the positioning performance of the proposed AUKF is contrasted with that of conventional algorithms in various operation scenes.Simulation results demonstrate that the average value of error calculated by AUKF is less than 1.5 m,and the success rate of positioning touches 95.0%.Compared to Kalman filter(KF)and UKF,AUKF exhibits superior accuracy and stability in train positioning.Consequently,the proposed AUKF is well-suited for providing precise positioning services in variable operating environments for trains.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
文摘Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its performance.The proposed algorithm employs a self-adaptive parameter setting,Lagrange interpolation formula,and a new local search strategy embedded with Levy flight search to enhance its searching ability to make a better trade-off between exploration and exploitation.Also,the fragrance generation scheme of BOA is modified,which leads for exploring the domain effectively for better searching.To evaluate the performance,it has been applied to solve the IEEE CEC 2017 benchmark suite.The results have been compared to that of six state-of-the-art algorithms and five BOA variants.Moreover,various statistical tests,such as the Friedman rank test,Wilcoxon rank test,convergence analysis,and complexity analysis,have been conducted to justify the rank,significance,and complexity of the proposed mLBOA.Finally,the mLBOA has been applied to solve three real-world engineering design problems.From all the analyses,it has been found that the proposed mLBOA is a competitive algorithm compared to other popular state-of-the-art algorithms and BOA variants.
文摘S.M.Lozinskii proved the exact convergence rate at the zero of Lagrange interpolation polynomials to |x| based on equidistant nodes in [-1,1]. In 2000, M. Rever generalized S.M.Lozinskii's result to |x|α(0 <≤ α≤ 1). In this paper we will present the exact rate of convergence at the point zero for the interpolants of |x|α1(1 < α < 2)..
文摘It is a classical result of Bernstein that the sequence of Lagrange interpolation polynomials to \x\ at e-qually spaced nodes in [-1.1] diverges everywhere. except at zero and the end-points. In this paper we show that the sequence of Lagrange interpolation polynomials corresponding to the functions which possess better smoothness on equidistant nodes in [-1.1] still diverges every -where in the interval except at zero and the end-points.
文摘It is a classical result of Bernstein that the sequence of Lagrange interpolation polumomials to |x| at equally spaced nodes in [-1, 1] diverges everywhere, except at zero and the end-points. In the present paper, toe prove that the sequence of Lagrange interpolation polynomials corresponding to |x|^α (2 〈 α 〈 4) on equidistant nodes in [-1, 1] diverges everywhere, except at zero and the end-points.
文摘This paper shows that the sequence of Lagrange interpolation polynomials corresponding to the rune tion f(z) =|x|^α(1〈α〈2) on [-1,1] can diverge everywhere in the interval except at zero and the end-points.
文摘In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α with on equally
文摘Properties of Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynomials. Moreover, an integral expression of Lebesgue function is also obtained and the asymptotic behavior of Lebesgue constant is studied.
文摘We study the optimal order of approximation for |x|α (0 < α < 1) by Lagrange interpolation polynomials based on Chebyshev nodes of the first kind. It is proved that the Jackson order of approximation is attained.
基金partially supported by National Natural Science Foundation of China(11772165,11961054,11902170)Key Research and Development Program of Ningxia(2018BEE03007)+1 种基金National Natural Science Foundation of Ningxia(2018AAC02003,2020AAC03059)Major Innovation Projects for Building First-class Universities in China’s Western Region(Grant No.ZKZD2017009).
文摘In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is applied to treat the spatial variables and their partial derivatives,and the collocation method for solving the second order differential equations is established.Secondly,the differential matrix is used to simplify the given differential equations on a given test node.Finally,based on three kinds of test nodes,numerical experiments show that the present scheme can not only calculate the high wave numbers problems,but also calculate the variable wave numbers problems.In addition,the algorithm has the advantages of high calculation accuracy,good numerical stability and less time consuming.
文摘In this paper, we investigate the negative extremums of fundamental functions of Lagrange interpolation based on Chebyshev nodes. Moreover, we establish some companion results to the theorem of J. Szabados on the positive extremum.
基金Supported by the National Natural Science Foundation of China(Grant No.11871006).
文摘This paper investigates the optimal Lagrange interpolation of a class F∞of infinitely differentiable functions on[-1,1]in L_(∞)[-1,1]and weighted spaces L_(p,ω)[-1,1],1≤p<∞withωa continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation polynomials based on the zeros of polynomials with the leading coefficient 1 of the least deviation from zero in L_(p,ω)[-1,1]are optimal for 1≤p<∞.We also give the optimal Lagrange interpolation nodes when the endpoints are included in the nodes.
基金Supported by the National Nature Science Foundation.
文摘We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.
文摘In this paper, we obtain a properly posed set of nodes for interpolation on a sphere. Moreover it is applied to construct properly posed set of nodes for Lagrange interpolation on the trivariate polynomial space of total degree n.