针对 L i F- TLD在 n-γ混合场的区分测量、抗核辐射加固实验和辅助核查时 ,存在 TL D吸收剂量响应的 LET效应问题 ,开展了 TLD对中子响应的 L ET效应实验研究。研究工作从实际应用角度出发 ,优选了目前国内重现性指标最好的 L i F- TL ...针对 L i F- TLD在 n-γ混合场的区分测量、抗核辐射加固实验和辅助核查时 ,存在 TL D吸收剂量响应的 LET效应问题 ,开展了 TLD对中子响应的 L ET效应实验研究。研究工作从实际应用角度出发 ,优选了目前国内重现性指标最好的 L i F- TL D探测器 ,设计了从热中子至 14Me V中子的辐照装置 ,进行了严格的实验测试和必要的理论计算 ,得出了 Li F- TLD对较宽能区中子响应的 LET效应因子。其结果可用于 n- γ混合场的区分测量、抗核辐射加固实验和核查。展开更多
Existing standards show a clear discrepancy in the specification of the maximum proton energy for qualified ground-based evaluation of single-event effects,which can range from 180 to 500 MeV. This work finds that the...Existing standards show a clear discrepancy in the specification of the maximum proton energy for qualified ground-based evaluation of single-event effects,which can range from 180 to 500 MeV. This work finds that the threshold linear energy transfer of a tested device is a critical parameter for determining the maximum proton energy. The inner mechanisms are further revealed. Highenergy deposition events(>10 MeV) in sensitive volumes are attributed to the interaction between protons and the tungsten vias in the metallization layers.展开更多
In this work, the electronic mass stopping power and the range of protons in some biological human body parts (Water, Muscle, Skeletal and Bone, Cortical) were calculated in the energy range of protons 0.04 to 200 MeV...In this work, the electronic mass stopping power and the range of protons in some biological human body parts (Water, Muscle, Skeletal and Bone, Cortical) were calculated in the energy range of protons 0.04 to 200 MeV using the theory of Bethe-Bloch formula as giving in the references. All these calculations were done using Matlab program. The data related to the densities, average atomic number to mass number and excitation energies for the present tissues and substances were collected from ICRU Report 44 (1989). The present results for electronic mass stopping powers and ranges were compared with the data of PSTAR and good agreements were found between them, especially at energies between 1 - 200 MeV for stopping power and 4 - 200 MeV for the range. Also in this study, several important quantities in the field of radiation, such as thickness, linear energy transfer (LET), absorbed dose, equivalent dose, and effective dose of the protons in the given biological human body parts were calculated at protons energy 0.04 - 200 MeV.展开更多
结合器件版图,通过对2 k SRAM存储单元和外围电路进行单粒子效应激光微束辐照,获得SRAM器件的单粒子翻转敏感区域,测定了不同敏感区域单粒子翻转的激光能量阈值和等效LET阈值,并对SRAM器件的单粒子闭锁敏感度进行测试。结果表明,存储单...结合器件版图,通过对2 k SRAM存储单元和外围电路进行单粒子效应激光微束辐照,获得SRAM器件的单粒子翻转敏感区域,测定了不同敏感区域单粒子翻转的激光能量阈值和等效LET阈值,并对SRAM器件的单粒子闭锁敏感度进行测试。结果表明,存储单元中截止N管漏区、截止P管漏区、对应门控管漏区是单粒子翻转的敏感区域;实验中没有测到该器件发生单粒子闭锁现象,表明采用外延工艺以及源漏接触、版图布局调整等设计对器件抗单粒子闭锁加固是十分有效的。展开更多
基金supported by the National Natural Science Foundation of China(No.11505033)the Science and Technology Research Project of Guangdong,China(Nos.2015B090901048 and 2017B090901068)the Science and Technology Plan Project of Guangzhou,China(No.201707010186)
文摘Existing standards show a clear discrepancy in the specification of the maximum proton energy for qualified ground-based evaluation of single-event effects,which can range from 180 to 500 MeV. This work finds that the threshold linear energy transfer of a tested device is a critical parameter for determining the maximum proton energy. The inner mechanisms are further revealed. Highenergy deposition events(>10 MeV) in sensitive volumes are attributed to the interaction between protons and the tungsten vias in the metallization layers.
文摘In this work, the electronic mass stopping power and the range of protons in some biological human body parts (Water, Muscle, Skeletal and Bone, Cortical) were calculated in the energy range of protons 0.04 to 200 MeV using the theory of Bethe-Bloch formula as giving in the references. All these calculations were done using Matlab program. The data related to the densities, average atomic number to mass number and excitation energies for the present tissues and substances were collected from ICRU Report 44 (1989). The present results for electronic mass stopping powers and ranges were compared with the data of PSTAR and good agreements were found between them, especially at energies between 1 - 200 MeV for stopping power and 4 - 200 MeV for the range. Also in this study, several important quantities in the field of radiation, such as thickness, linear energy transfer (LET), absorbed dose, equivalent dose, and effective dose of the protons in the given biological human body parts were calculated at protons energy 0.04 - 200 MeV.
文摘结合器件版图,通过对2 k SRAM存储单元和外围电路进行单粒子效应激光微束辐照,获得SRAM器件的单粒子翻转敏感区域,测定了不同敏感区域单粒子翻转的激光能量阈值和等效LET阈值,并对SRAM器件的单粒子闭锁敏感度进行测试。结果表明,存储单元中截止N管漏区、截止P管漏区、对应门控管漏区是单粒子翻转的敏感区域;实验中没有测到该器件发生单粒子闭锁现象,表明采用外延工艺以及源漏接触、版图布局调整等设计对器件抗单粒子闭锁加固是十分有效的。
文摘脉冲激光在集成电路和器件单粒子效应(Single Event Effect,SEE)研究中有着广泛的应用。与重离子源相比,通过脉冲激光诱发SEE更容易获得空间信息和时间信息。本文介绍激光诱发SEE的产生机理、模拟试验设置以及线性能量传输(Linear Energy Transfer,LET)算法,通过皮秒激光诱发单光子与飞秒激光诱发双光子的模拟试验,对SEE现象发生时电压响应与能量的关系进行分析,验证了脉冲激光在SEE研究中的有效性和可行性。