Sun Guoxiang, Ding Nan, Song Yuqing, Wang Zhen, Song Liangwei. Determination of Guaiacol salicylate in Guacetisal by HPLCmethod and qualitative identification of relevant substances by HPLC-MS
Medicinal materials Ma Chenchen, Li Bailin, Ou Jie, Wang Jing, Zhao Junhong. Detection of N-acyl-homoserine lactones class signal molecules of quorum sensing secreted by bacteria using high performance liquid chromato...Medicinal materials Ma Chenchen, Li Bailin, Ou Jie, Wang Jing, Zhao Junhong. Detection of N-acyl-homoserine lactones class signal molecules of quorum sensing secreted by bacteria using high performance liquid chromatography-mass spectrometry/ mass spectrometry展开更多
Cyanotoxins produced by cyanobacteria are formidable threats to aquatic ecosystems and public health worldwide. The potential health risks associated with cyanotoxins from contaminated fishponds are becoming a growing...Cyanotoxins produced by cyanobacteria are formidable threats to aquatic ecosystems and public health worldwide. The potential health risks associated with cyanotoxins from contaminated fishponds are becoming a growing concern, as cyanotoxin production has steadily increased over time in these aquatic environments. Therefore, this study aims to utilize targeted and non-targeted Liquid Chromatography Mass Spectrometer (LC-MS) analytical methods to detect cyanotoxins in catfish (Clarias gariepinus) tissue harvested from fishponds. For detecting cyanotoxins in fish tissue utilizing the non-targeted approach, high-resolution MS/MS spectra data obtained from the analysis were converted to mzML format, analyzed with the Global Natural Product Social (GNPS) Library and CANOPUS annotations for LEVEL 3 metabolite identification, and visualized as a molecular network in Cytoscape. Regarding the targeted method, the toxin identification and quantification were achieved by comparing samples spiked with known concentrations of MC-RR and YR to an authentic toxin standard. The results of the target analysis showed that microcystin variant MC-RR was not detected in the fish tissue. The MC-YR variant was detected in the intestines and gills of Clarias gariepinus at concentrations of 13.2–10.6 μg/g and 1.5–13.9 μg/g, respectively. The muscle tissues across all fish ponds showed MC-YR concentrations between 10.5 and 16.06 μg/g. The highest concentration of MC-YR was found in the liver tissue in pond 6 (20.9 μg/g). The untargeted LC-MS method led to the identification of a larger number of cyanometabolites in the fish tissue, such as aeruginosins, anabaenopeptins, microginins. Non-toxic secondary metabolites like octadecadienoic acid, while phosphocholine (PC), ethanesulfonic acid, pheophorbide A, microcolins, cholic acid, phenylalanine, amyl amine and phosphocholine (PC), triglyceride (TG), phosphocholine (PC) and sulfonic acid derieved from cyanobacteria, fish and anthropogenic sources were also detected in the fish tissues. The non-targeted analysis facilitates the identification of both unexpected and unknown compounds.展开更多
Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extr...Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extraction(SPE)-LC-MS/MS method to simultaneously trace analyze 59 halogenated aromatic DBPs.The limits of detection and limits of quantification of halogenated aromatic DBPs ranged from 0.03 to 135.23 ng/L and from 0.1 to 450.76 ng/L,respectively.The range of recoveries and relative standard deviation(RSD)in river water were between 72.41%to 119.54%and 1.86%to 16.03%,respectively.Therefore,this method can be used to accurately analyze trace levels of halogenated aromatic DBPs in drinking water.The occurrence and transformation of halogenated aromatic DBPs were explored based on this method.In the chlorinated simulated source water and chlorinated river water,20 and 45 halogenated aromatic DBPs were determined,respectively.The active halogen species(HOCl,HOBr,and HOI)first reacted with natural organic matter(NOM)to form halogenated aromatic DBPs.Then,chlorine further reacted with the halogenated aromatic DBPs to convert them into small-molecule halogenated aliphatic DBPs through oxidation,electrophilic substitution,and hydrolysis reaction,etc.In the chlorinated simulated source water,chlorinated river water,and tap water,the toxicity contribution of bromoacetic acids(Br-HAAs)accounted for themajority(>71.16%).Given that halogenated aromatic DBPs are intermediate products of halogenated aliphatic DBPs,controlling the formation of halogenated aromatic DBPs is beneficial in decreasing the formation of halogenated aliphatic DBPs,thereby diminishing the toxicity of drinking water.展开更多
Recent studies have highlighted the potential of plant extracts as therapeutic agents for managing oxidative stress and related disorders.This study aims to elucidate the phenolic composition and antioxidant propertie...Recent studies have highlighted the potential of plant extracts as therapeutic agents for managing oxidative stress and related disorders.This study aims to elucidate the phenolic composition and antioxidant properties of Gymnema sylvestre extracts.Ethanolic reflux extraction followed by column chromatography was employed to isolate phenolic compounds.The total phenolic and flavonoid contents were quantified using the Folin–Ciocalteu and aluminum chloride colorimetric methods,respectively.Antioxidant activities were assessed by DPPH,ABTS scavenging assays and the ferric reducing antioxidant power(FRAP)assay.High-Performance Liquid Chromatography(HPLC)with a C18 column and Thermo TSQ Quantum Access Max(LC-MS)were used to determine the levels of gymnemic acid and identify other potential phenolic compounds.The analysis revealed significant antioxidant activities in the fractions.Fraction A showed the highest DPPH and ABTS scavenging activities,and Fraction C demonstrated the highest ferric reducing power.LC-MS analysis identified several phenolic compounds,indicating that these are major contributors to the antioxidant efficacy of the extract.This study provides a detailed phenolic profile and confirms the strong antioxidant potential of Gymnema sylvestre leaf extract,supporting its therapeutic use and further investigation.展开更多
Piper sarmentosum Roxb.(Piperaceae)is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia,offering both health and culinary benefits.In this study the secondary me...Piper sarmentosum Roxb.(Piperaceae)is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia,offering both health and culinary benefits.In this study the secondary metabolites in different organs of P.sarmentosum were identified and their relative abundances were characterized.The metabolic profiles of leaves,roots,stems and fruits were comprehensively investigated by liquid chromatography high-resolution mass spectrometry(LC-HR-MS)and the data subsequently analyzed using multivariate statistical methods.Manual interpretation of the tandem mass spectrometric(MS/MS)fragmentation patterns revealed the presence of 154 tentatively identified metabolites,mostly represented by alkaloids and flavonoids.Principle component analysis and hierarchical clustering indicated the predominant occurrence of flavonoids,lignans and phenyl propanoids in leaves,aporphines in stems,piperamides in fruits and lignan-amides in roots.Overall,this study provides extensive data on the metabolite composition of P.sarmentosum,supplying useful information for bioactive compounds discovery and patterns of their preferential biosynthesis or storage in specific organs.This can be used to optimize production and harvesting as well as to maximize the plant’s economic value as herbal medicine or in food applications.展开更多
文摘Sun Guoxiang, Ding Nan, Song Yuqing, Wang Zhen, Song Liangwei. Determination of Guaiacol salicylate in Guacetisal by HPLCmethod and qualitative identification of relevant substances by HPLC-MS
文摘Medicinal materials Ma Chenchen, Li Bailin, Ou Jie, Wang Jing, Zhao Junhong. Detection of N-acyl-homoserine lactones class signal molecules of quorum sensing secreted by bacteria using high performance liquid chromatography-mass spectrometry/ mass spectrometry
基金the National Research Foundation under grant number[SFH150715126382],in addition,to support from the Association of African Universities and the Research Publication Committee(RPC)at the University of Venda.
文摘Cyanotoxins produced by cyanobacteria are formidable threats to aquatic ecosystems and public health worldwide. The potential health risks associated with cyanotoxins from contaminated fishponds are becoming a growing concern, as cyanotoxin production has steadily increased over time in these aquatic environments. Therefore, this study aims to utilize targeted and non-targeted Liquid Chromatography Mass Spectrometer (LC-MS) analytical methods to detect cyanotoxins in catfish (Clarias gariepinus) tissue harvested from fishponds. For detecting cyanotoxins in fish tissue utilizing the non-targeted approach, high-resolution MS/MS spectra data obtained from the analysis were converted to mzML format, analyzed with the Global Natural Product Social (GNPS) Library and CANOPUS annotations for LEVEL 3 metabolite identification, and visualized as a molecular network in Cytoscape. Regarding the targeted method, the toxin identification and quantification were achieved by comparing samples spiked with known concentrations of MC-RR and YR to an authentic toxin standard. The results of the target analysis showed that microcystin variant MC-RR was not detected in the fish tissue. The MC-YR variant was detected in the intestines and gills of Clarias gariepinus at concentrations of 13.2–10.6 μg/g and 1.5–13.9 μg/g, respectively. The muscle tissues across all fish ponds showed MC-YR concentrations between 10.5 and 16.06 μg/g. The highest concentration of MC-YR was found in the liver tissue in pond 6 (20.9 μg/g). The untargeted LC-MS method led to the identification of a larger number of cyanometabolites in the fish tissue, such as aeruginosins, anabaenopeptins, microginins. Non-toxic secondary metabolites like octadecadienoic acid, while phosphocholine (PC), ethanesulfonic acid, pheophorbide A, microcolins, cholic acid, phenylalanine, amyl amine and phosphocholine (PC), triglyceride (TG), phosphocholine (PC) and sulfonic acid derieved from cyanobacteria, fish and anthropogenic sources were also detected in the fish tissues. The non-targeted analysis facilitates the identification of both unexpected and unknown compounds.
基金supported by the National Natural Science Foundation of China(No.52300005)China Postdoctoral Science Foundation(No.2023TQ0098)+5 种基金Heilongjiang Postdoctoral Fund(No.LBH-Z23175)Heilongjiang Touyan Innovation Team Program(No.HIT-SE-01)the Crossover Fund of Medical Engineering Science of Harbin Institute of Technology(No.IR2021107)the National Natural Science Foundation of International(Regional)Cooperation and Exchange Project(No.51961125104)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS15)the Ecological and Environmental Protection Research Project of Heilongjiang Province(No.HST2022ST006).
文摘Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extraction(SPE)-LC-MS/MS method to simultaneously trace analyze 59 halogenated aromatic DBPs.The limits of detection and limits of quantification of halogenated aromatic DBPs ranged from 0.03 to 135.23 ng/L and from 0.1 to 450.76 ng/L,respectively.The range of recoveries and relative standard deviation(RSD)in river water were between 72.41%to 119.54%and 1.86%to 16.03%,respectively.Therefore,this method can be used to accurately analyze trace levels of halogenated aromatic DBPs in drinking water.The occurrence and transformation of halogenated aromatic DBPs were explored based on this method.In the chlorinated simulated source water and chlorinated river water,20 and 45 halogenated aromatic DBPs were determined,respectively.The active halogen species(HOCl,HOBr,and HOI)first reacted with natural organic matter(NOM)to form halogenated aromatic DBPs.Then,chlorine further reacted with the halogenated aromatic DBPs to convert them into small-molecule halogenated aliphatic DBPs through oxidation,electrophilic substitution,and hydrolysis reaction,etc.In the chlorinated simulated source water,chlorinated river water,and tap water,the toxicity contribution of bromoacetic acids(Br-HAAs)accounted for themajority(>71.16%).Given that halogenated aromatic DBPs are intermediate products of halogenated aliphatic DBPs,controlling the formation of halogenated aromatic DBPs is beneficial in decreasing the formation of halogenated aliphatic DBPs,thereby diminishing the toxicity of drinking water.
文摘Recent studies have highlighted the potential of plant extracts as therapeutic agents for managing oxidative stress and related disorders.This study aims to elucidate the phenolic composition and antioxidant properties of Gymnema sylvestre extracts.Ethanolic reflux extraction followed by column chromatography was employed to isolate phenolic compounds.The total phenolic and flavonoid contents were quantified using the Folin–Ciocalteu and aluminum chloride colorimetric methods,respectively.Antioxidant activities were assessed by DPPH,ABTS scavenging assays and the ferric reducing antioxidant power(FRAP)assay.High-Performance Liquid Chromatography(HPLC)with a C18 column and Thermo TSQ Quantum Access Max(LC-MS)were used to determine the levels of gymnemic acid and identify other potential phenolic compounds.The analysis revealed significant antioxidant activities in the fractions.Fraction A showed the highest DPPH and ABTS scavenging activities,and Fraction C demonstrated the highest ferric reducing power.LC-MS analysis identified several phenolic compounds,indicating that these are major contributors to the antioxidant efficacy of the extract.This study provides a detailed phenolic profile and confirms the strong antioxidant potential of Gymnema sylvestre leaf extract,supporting its therapeutic use and further investigation.
基金supported by the German Academic Exchange Service(DAAD)as a grant scholarship and part of the Ph.D.thesis of IW.Funding program/-ID:Research Grants-Doctoral Programs in Germany,2017/18(57299294),ST34.
文摘Piper sarmentosum Roxb.(Piperaceae)is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia,offering both health and culinary benefits.In this study the secondary metabolites in different organs of P.sarmentosum were identified and their relative abundances were characterized.The metabolic profiles of leaves,roots,stems and fruits were comprehensively investigated by liquid chromatography high-resolution mass spectrometry(LC-HR-MS)and the data subsequently analyzed using multivariate statistical methods.Manual interpretation of the tandem mass spectrometric(MS/MS)fragmentation patterns revealed the presence of 154 tentatively identified metabolites,mostly represented by alkaloids and flavonoids.Principle component analysis and hierarchical clustering indicated the predominant occurrence of flavonoids,lignans and phenyl propanoids in leaves,aporphines in stems,piperamides in fruits and lignan-amides in roots.Overall,this study provides extensive data on the metabolite composition of P.sarmentosum,supplying useful information for bioactive compounds discovery and patterns of their preferential biosynthesis or storage in specific organs.This can be used to optimize production and harvesting as well as to maximize the plant’s economic value as herbal medicine or in food applications.