This article extends the foundational work of Wang and Wang on modal logic over lattices.Building upon their framework using polyadic modal logic with binary modalities<sup>and<inf>under standard Kripke se...This article extends the foundational work of Wang and Wang on modal logic over lattices.Building upon their framework using polyadic modal logic with binary modalities<sup>and<inf>under standard Kripke semantics to axiomatize lattice structures,we focus on the modal characterization of bounded lattices and their extensions relevant to logical systems.By introducing nullary modalities 1(maximum element)and 0(minimum element),we first establish a modal axiomatic system for bounded lattices.Subsequently,we provide pure formula characterizations of complementation and orthocomplementation relations in lattices,along with corresponding completeness results.As key applications,we present modal characterizations of fundamental logical algebraic structures:Boolean algebras,orthomodular lattices,and Heyting algebras.The last section develops novel axiomatization results for atomic lattices and atomless lattices.Throughout this work,all axiomatic systems are shown to be strongly complete via pureformula extensions,demonstrating how hybrid modal languages with nullary operators can uniformly capture boundary elements,complementation properties,and latticetheoretic operations central to both classical and nonclassical logics.展开更多
Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opport...Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.展开更多
The existence and stability of the fundamental, multi-peak, and twisted solitons in Kerr nonlinear media with chirped(amplitude-modulated) lattices are reported. We discover that the chirp rate and lattice depth can d...The existence and stability of the fundamental, multi-peak, and twisted solitons in Kerr nonlinear media with chirped(amplitude-modulated) lattices are reported. We discover that the chirp rate and lattice depth can dramatically change the existence domain of solitons, the energy flow of solitons increases with increasing chirp rate or decreasing lattice depth.We also analyze how the chirp rate and lattice depth affect the stability of solitons. The stable domains of fundamental solitons and twisted solitons exhibit a multi-window distribution, while multi-peak solitons are unstable throughout the entire existence domain.展开更多
Cellular structures,distinguished by their porous characteristics,are frequently adopted in designs aimed at impact isolation,owing to their lightweight attributes and exceptional ability to absorb energy during impac...Cellular structures,distinguished by their porous characteristics,are frequently adopted in designs aimed at impact isolation,owing to their lightweight attributes and exceptional ability to absorb energy during impact events.Lattice structures often rely on plastic deformation to absorb energy.However,in applications such as sports protection and robotic grasping,there exists a requirement for a reusable structure designed to isolate impacts,which can be effectively achieved by three-dimensional flexible lattice structures.In this work,a theoretical calculation method for soft lattice structures is proposed,and in light of this method,a three-dimensional soft lattice structure aimed at isolating impacts has been carefully designed.The predictive theory for the quasistatic mechanical properties,including stiffness and buckling strength for three-dimensional soft lattice structures is described.On the basis of the quasizero stiffness characteristics inherent in body-centered cubic,octahedral,and regular diamond structures,a soft impact isolation structure is designed.The soft structure,fabricated with thermoplastic polyurethane material,demonstrated a peak impact isolation efficiency of 83%,despite possessing a thickness of 24 mm described.The work provides a novel design methodology for three-dimensional soft lattice structures and supports the development of reusable impact isolation structures for applications such as reconfigurable robots and space capture missions.展开更多
We study the existence and stability of dark-gap solitons in linear lattice and nonlinear lattices.The results indicate that the combination of linear and nonlinear lattices gives dark-gap solitons unique properties.T...We study the existence and stability of dark-gap solitons in linear lattice and nonlinear lattices.The results indicate that the combination of linear and nonlinear lattices gives dark-gap solitons unique properties.The linear lattice can stabilize dark-gap solitons,while the nonlinear lattice reduces the stability of dark-gap solitons.On the basis of numerical analysis,we investigate the effects of lattice depth,chemical potential,nonlinear lattice amplitude,and nonlinear lattice period on the soliton in mixed lattices with the same and different periods.The stability of dark-gap soliton is studied carefully by means of real-time evolution and linear stability analysis.Dark-gap solitons can exist stably in the band gap,but the solitons formed by the mixed lattices are slightly different when the period is the same or different.展开更多
We first introduce several sphere packing ways such as simple cubic packing(SC),face-centered cubic packing(FCC),body-centered cubic packing(BCC),and rectangular body-centered cuboid packing(recBCC),where the rectangu...We first introduce several sphere packing ways such as simple cubic packing(SC),face-centered cubic packing(FCC),body-centered cubic packing(BCC),and rectangular body-centered cuboid packing(recBCC),where the rectangular body-centered cuboid packing means the packing method based on a rectangular cuboid whose base is square and whose height is times the length of one side of its square base such that the congruent spheres are centered at the 8 vertices and the centroid of the cuboid.The corresponding lattices are denoted as SCL,FCCL,BCCL,and recBCCL,respectively.Then we consider properties of those lattices,and show that FCCL and recBCCL are the same.Finally we point out some possible applications of the recBCC lattices.展开更多
Developing lightweight lattice materials that possess exceptional strength,stiffness,and toughness(or energy absorption)simultaneously remains a significant challenge.In this study,we develop a novel design strategy:i...Developing lightweight lattice materials that possess exceptional strength,stiffness,and toughness(or energy absorption)simultaneously remains a significant challenge.In this study,we develop a novel design strategy:incorporating nonlocal interactions into lattice beams,creating“nonlocal lattices”.Utilizing simulation experiments,we investigated the bending behaviors of these lattices,with a particular focus on their damage evolution.Interestingly,these nonlocal lattices,categorized as stretch-dominated,exhibit extraordinary peak force(strength)and stiffness(modulus)comparable to traditional stretchdominated lattices,while maintaining superior energy absorption(toughness).Analysis of damage evolution within the lattice beams reveals a transition from localized to dispersed damage patterns.This transition delays strain localization,thereby improving material utilization efficiency.Furthermore,stronger nonlocal interaction leads to a more dispersed damage zone,further improving materials utilization efficiency.These findings demonstrate that nonlocal lattices achieve excellent energy dissipation(toughness)without compromising strength and stiffness.This highlights the crucial role of nonlocal interactions in governing strain localization within lattice materials.The design strategy here unlocks new inspirations for the development of strong and tough lightweight materials.展开更多
We propose a superposed Bessel optical lattice formed by multiple Bessel optical lattices.The static and rotational structures are formed in the presence of a spin-orbit coupling(SOC)interaction in the atomic in Bose...We propose a superposed Bessel optical lattice formed by multiple Bessel optical lattices.The static and rotational structures are formed in the presence of a spin-orbit coupling(SOC)interaction in the atomic in Bose–Einstein condensates are investigated,it is shown that the two structures can be manipulated by adjusting the parameters of the superposed Bessel optical lattices.The results show that the SOC interaction has an important effect on the two structures in the superposed Bessel optical lattices,and the SOC interaction can enhance the robustness of the structures.The Gaussian,toroidal and vortex superposition structures in the superposition lattice are presented,the interference processes in the steady state structures are analyzed,and the effects of SOC interactions on the Gaussian vortex and toroidal vortex structures are investigated,and the angular momentum of the vortex states can be increased by SOC interactions.展开更多
Two-dimensional(2D)moirésuperlattices have emerged as a versatile platform for uncovering exotic quantum phases,many of which arise in bilayer systems exhibiting Archimedean tessellation patterns such as triangul...Two-dimensional(2D)moirésuperlattices have emerged as a versatile platform for uncovering exotic quantum phases,many of which arise in bilayer systems exhibiting Archimedean tessellation patterns such as triangular,hexagonal,and kagome lattices.Here,we propose a strategy to engineer semiregular tessellation patterns in untwisted bilayer graphene by applying anisotropic epitaxial tensile strain(AETS)along crystallographic directions.Through force-field and firstprinciples calculations,we demonstrate that AETS can induce a rich variety of semiregular tessellation geometries,including truncated hextille,prismatic pentagon,and brick-phase arrangements.Characteristic electronic Dirac and flat bands of the lattice models associated with these semiregular tessellations are observed near the Fermi level,arising from interlayer interactions generated by the spatial rearrangement of AB,BA,and SP domains.Furthermore,the real-space observations of electronic kagome,distorted Lieb,brick-like,and one-dimensional stripe lattices demonstrate that AETS enables tunable semiregular tessellation lattices.Our study identifies AETS as a promising new degree of freedom in moiréengineering,offering a reproducible and scalable platform for exploring exotic electronic lattices in moirésystems.展开更多
In this article, the authors mainly study how to obtain new semicontinuous lattices from the given semicontinuous lattices and discuss the conditions under which the image of a semicontinuous projection operator is al...In this article, the authors mainly study how to obtain new semicontinuous lattices from the given semicontinuous lattices and discuss the conditions under which the image of a semicontinuous projection operator is also semicontinuous. Moreover, the authors investigate the relation between semicontinuous lattices and completely distributive lattices. Finally, it is proved that the strongly semicontinuous lattice category is a Cartesian closed category.展开更多
3D printing-based supercapacitors have been extensively explored,yet the rigid rheological requirement for corresponding ink preparation significantly limits the manufacturing of true 3D architecture in achieving supe...3D printing-based supercapacitors have been extensively explored,yet the rigid rheological requirement for corresponding ink preparation significantly limits the manufacturing of true 3D architecture in achieving superior energy storage.We proposed the stereolithographic technique to fabricate the metallic composite lattices with octet-truss arrangement by using electroless plating and engineering the 3D hierarchically porous graphene onto the scaffolds to build the hierarchically cellular lattices in quasi-solid supercapacitor application.The supercapacitor device that is composed of composite lattices span several pore size orders from nm to mm holds promising behavior on the areal capacitance(57.75 mF cm-2),rate capability(70% retention,2-40 mA cm-2),and long lifespan(96% after 5000 cycles),as well as superior energy density of 0.008 mWh cm-2,which are comparable to the state-of-the-art carbon-based supercapacitor.By synergistically combining this facile stereolithographic 3D printing technology with the hierarchically porous graphene architecture,we provide a novel route of manufacturing energy storage device as well as new insight into building other high-performance functional electronics.展开更多
In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by sim...In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by simulation. In particular, the large modularity Q can hold off the cascading failure dynamic process in community networks. Furthermore, different attack strategies also greatly affect the cascading failure dynamic process. It is particularly significant to control cascading failure process in real community networks.展开更多
Identity-Based Proxy Re-Encryption (IB-PRE) allows a semi-trusted proxy to convert the ciphertext encrypted under Alice’s identity into Bob’s ciphertext of the same message without leaking plaintext. Lattice-based c...Identity-Based Proxy Re-Encryption (IB-PRE) allows a semi-trusted proxy to convert the ciphertext encrypted under Alice’s identity into Bob’s ciphertext of the same message without leaking plaintext. Lattice-based cryptography enjoys potential resistance to quantum analysis and low computational complexity. A multi-hop and unidirectional IB-PRE from lattices is presented. We split the functions of decryption and ciphertext transformation separately, and design the double private keys mechanism, where two keys are generated for each user, one key is used to decrypt the ciphertext by Pre-Image Sampling technique, and the other is used to generate the re-encryption key by Bonsai Trees technique. The generation of the re-encryption key is non-interactive and collusion resistant. Moreover, its IND-sID-CPA security over the decisional Learning With Errors (LWE) assumption under the standard model is proved. Compared with some previous IBPRE schemes from Bilinear Pairings, the format of transformed ciphertext in our scheme remains unchanged, furthermore, it can also resist quantum analysis. Compared with some existing IB-PRE schemes from lattices with similar properties, the space of the message in our scheme is a vector of length l and the encryption process remains a lower encryption blowup factor. At last, a proof-of-concept implementation is provided.展开更多
The partial and complete periodic synchronization in coupled discontinuous map lattices consisting of both discon- tinuous and non-invertible maps are discussed. We classify three typical types of periodic synchroniza...The partial and complete periodic synchronization in coupled discontinuous map lattices consisting of both discon- tinuous and non-invertible maps are discussed. We classify three typical types of periodic synchronization states, which give rise to different spatiotemporal patterns including static partial periodic synchronization, dynamically periodic syn- chronization, and complete periodic synchronization patterns. A special prelude dynamics of partial and complete periodic synchronization motion, which is shown by five separated concave curves in the time series plots of the order parameters, is observed. The detailed analysis shows that the special prelude dynamics is induced by the competition between two synchronized clusters, and the analytical expression for the corresponding order parameter is obtained.展开更多
This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bl...This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bloch modes which are excited from the extended photonie band-gap structure at Bloch wave-numbers with kx = 0. The DMs for both positive and negative defects are considered in this method.展开更多
The chaotic ratchet effect for Bos-Einstein condensed atoms in an optical lattice is investigated. By using the direct perturbation method we obtain the chaotic solution of the condensed system. Theoretical analysis r...The chaotic ratchet effect for Bos-Einstein condensed atoms in an optical lattice is investigated. By using the direct perturbation method we obtain the chaotic solution of the condensed system. Theoretical analysis reveals that the transport of the condensed atoms in the ratchet potential is a chaotic one, and corresponding numerical results agree well with the theoretical results.展开更多
Ratchet transport of overdamped particles is investigated in superimposed driven lattices using Langevin dynamics simulations. It is found that noise can strongly affect the transport of the particles. When lattices d...Ratchet transport of overdamped particles is investigated in superimposed driven lattices using Langevin dynamics simulations. It is found that noise can strongly affect the transport of the particles. When lattices driving dominates the transport, the noise acts as a disturbance of the directed transport and slows down the average velocity of the particles.When the driving phase has less impact on particle transport, Gaussian white noise can play a positive role. By simply modulating these two parameters, we can control efficiency and the direction of the directed currents.展开更多
The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically. It is shown that, the analytical criteria fo...The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically. It is shown that, the analytical criteria for self-trapping and moving soliton/breather of the primary-component condensate are modified significantly by an admixture of an impurity component (the second component). The realization of the self-trapped state and the moving soliton/breather states of the primary-component becomes more easy with the minor admixture of the impurity-component, even if the two components are partly overlapped.展开更多
Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate wh...Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate when the optimization objectives for an accelerator are equal to or greater than four. Recently, many-objective evolutionary algorithms(MaOEAs)that can solve problems with four or more optimization objectives have received extensive attention. In this study, two diffraction-limited storage ring(DLSR) lattices of the Extremely Brilliant Source(ESRF-EBS) type with different energies were designed and optimized using three MaOEAs and a widely used MOEA. The initial population was found to have a significant impact on the performance of the algorithms and was carefully studied. The performances of the four algorithms were compared, and the results demonstrated that the grid-based evolutionary algorithm(GrEA) had the best performance.Ma OEAs were applied in many-objective optimization of DLSR lattices for the first time, and lattices with natural emittances of 116 and 23 pm·rad were obtained at energies of 2 and 6 GeV, respectively, both with reasonable dynamic aperture and local momentum aperture(LMA). This work provides a valuable reference for future many-objective optimization of DLSRs.展开更多
Commercially available lattices contain various kinds of morphological imperfections which result in great degradation in lattices' mechanical properties, therefore, to obtain imperfection insensitive lattice structu...Commercially available lattices contain various kinds of morphological imperfections which result in great degradation in lattices' mechanical properties, therefore, to obtain imperfection insensitive lattice structure is obviously a practical research subject. Hierarchical structure materials were found to be a class of promising anti-defect materials, This paper builds hierarchical lattice by adding soft adhesion to lattice's cell edges and numerical results show that its imperfection sensitivity to missing bars is minor compared with the classic lattice. Soft adhesion with appropriate properties reinforce cell edge's bending stiffness and thus reduce the bending deformation in lattice caused by missing bars defect, which is confirmed by statistical analysis of normalized node displacements of imperfect lattices under hydrostatic compression and shear loads.展开更多
基金supported by China Postdoctoral Science Foundation(2024M750225).
文摘This article extends the foundational work of Wang and Wang on modal logic over lattices.Building upon their framework using polyadic modal logic with binary modalities<sup>and<inf>under standard Kripke semantics to axiomatize lattice structures,we focus on the modal characterization of bounded lattices and their extensions relevant to logical systems.By introducing nullary modalities 1(maximum element)and 0(minimum element),we first establish a modal axiomatic system for bounded lattices.Subsequently,we provide pure formula characterizations of complementation and orthocomplementation relations in lattices,along with corresponding completeness results.As key applications,we present modal characterizations of fundamental logical algebraic structures:Boolean algebras,orthomodular lattices,and Heyting algebras.The last section develops novel axiomatization results for atomic lattices and atomless lattices.Throughout this work,all axiomatic systems are shown to be strongly complete via pureformula extensions,demonstrating how hybrid modal languages with nullary operators can uniformly capture boundary elements,complementation properties,and latticetheoretic operations central to both classical and nonclassical logics.
基金supported by the National Key R&D Program of China(Grant Nos.2024YFA140850,2022YFA1403601,and 2023YFC2410501)the National Natural Science Foundation of China(Grants Nos.12241402,12474059,12274203,12374113,and 12274204)。
文摘Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.
基金Project supported by the Science and Technology Project of Hebei Education Department, China (Grant No. ZD2020200)the Innovation Capability Improvement Project of Hebei Province, China (Grant No. 22567605H)。
文摘The existence and stability of the fundamental, multi-peak, and twisted solitons in Kerr nonlinear media with chirped(amplitude-modulated) lattices are reported. We discover that the chirp rate and lattice depth can dramatically change the existence domain of solitons, the energy flow of solitons increases with increasing chirp rate or decreasing lattice depth.We also analyze how the chirp rate and lattice depth affect the stability of solitons. The stable domains of fundamental solitons and twisted solitons exhibit a multi-window distribution, while multi-peak solitons are unstable throughout the entire existence domain.
文摘Cellular structures,distinguished by their porous characteristics,are frequently adopted in designs aimed at impact isolation,owing to their lightweight attributes and exceptional ability to absorb energy during impact events.Lattice structures often rely on plastic deformation to absorb energy.However,in applications such as sports protection and robotic grasping,there exists a requirement for a reusable structure designed to isolate impacts,which can be effectively achieved by three-dimensional flexible lattice structures.In this work,a theoretical calculation method for soft lattice structures is proposed,and in light of this method,a three-dimensional soft lattice structure aimed at isolating impacts has been carefully designed.The predictive theory for the quasistatic mechanical properties,including stiffness and buckling strength for three-dimensional soft lattice structures is described.On the basis of the quasizero stiffness characteristics inherent in body-centered cubic,octahedral,and regular diamond structures,a soft impact isolation structure is designed.The soft structure,fabricated with thermoplastic polyurethane material,demonstrated a peak impact isolation efficiency of 83%,despite possessing a thickness of 24 mm described.The work provides a novel design methodology for three-dimensional soft lattice structures and supports the development of reusable impact isolation structures for applications such as reconfigurable robots and space capture missions.
基金supported by the Innovation Capability Improvement Project of Hebei Province,China(Grant No.22567605H).
文摘We study the existence and stability of dark-gap solitons in linear lattice and nonlinear lattices.The results indicate that the combination of linear and nonlinear lattices gives dark-gap solitons unique properties.The linear lattice can stabilize dark-gap solitons,while the nonlinear lattice reduces the stability of dark-gap solitons.On the basis of numerical analysis,we investigate the effects of lattice depth,chemical potential,nonlinear lattice amplitude,and nonlinear lattice period on the soliton in mixed lattices with the same and different periods.The stability of dark-gap soliton is studied carefully by means of real-time evolution and linear stability analysis.Dark-gap solitons can exist stably in the band gap,but the solitons formed by the mixed lattices are slightly different when the period is the same or different.
文摘We first introduce several sphere packing ways such as simple cubic packing(SC),face-centered cubic packing(FCC),body-centered cubic packing(BCC),and rectangular body-centered cuboid packing(recBCC),where the rectangular body-centered cuboid packing means the packing method based on a rectangular cuboid whose base is square and whose height is times the length of one side of its square base such that the congruent spheres are centered at the 8 vertices and the centroid of the cuboid.The corresponding lattices are denoted as SCL,FCCL,BCCL,and recBCCL,respectively.Then we consider properties of those lattices,and show that FCCL and recBCCL are the same.Finally we point out some possible applications of the recBCC lattices.
基金supported by the National Natural Science Foundation of China(Grant Nos.11932002 and 11902004).
文摘Developing lightweight lattice materials that possess exceptional strength,stiffness,and toughness(or energy absorption)simultaneously remains a significant challenge.In this study,we develop a novel design strategy:incorporating nonlocal interactions into lattice beams,creating“nonlocal lattices”.Utilizing simulation experiments,we investigated the bending behaviors of these lattices,with a particular focus on their damage evolution.Interestingly,these nonlocal lattices,categorized as stretch-dominated,exhibit extraordinary peak force(strength)and stiffness(modulus)comparable to traditional stretchdominated lattices,while maintaining superior energy absorption(toughness).Analysis of damage evolution within the lattice beams reveals a transition from localized to dispersed damage patterns.This transition delays strain localization,thereby improving material utilization efficiency.Furthermore,stronger nonlocal interaction leads to a more dispersed damage zone,further improving materials utilization efficiency.These findings demonstrate that nonlocal lattices achieve excellent energy dissipation(toughness)without compromising strength and stiffness.This highlights the crucial role of nonlocal interactions in governing strain localization within lattice materials.The design strategy here unlocks new inspirations for the development of strong and tough lightweight materials.
基金supported by the Longdong University Doctoral Fund Program Projects(Grant Nos.XYBYZK2227,XYBYZK2219).
文摘We propose a superposed Bessel optical lattice formed by multiple Bessel optical lattices.The static and rotational structures are formed in the presence of a spin-orbit coupling(SOC)interaction in the atomic in Bose–Einstein condensates are investigated,it is shown that the two structures can be manipulated by adjusting the parameters of the superposed Bessel optical lattices.The results show that the SOC interaction has an important effect on the two structures in the superposed Bessel optical lattices,and the SOC interaction can enhance the robustness of the structures.The Gaussian,toroidal and vortex superposition structures in the superposition lattice are presented,the interference processes in the steady state structures are analyzed,and the effects of SOC interactions on the Gaussian vortex and toroidal vortex structures are investigated,and the angular momentum of the vortex states can be increased by SOC interactions.
基金supported by the National Natural Science Foundation of China(Grant Nos.52461160327,92477205,12474173,and 12104313)the National Key R&D Program of China(Grant No.2023YFA1406500)+3 种基金the Department of Science and Technology of Guangdong Province(Grant No.2021QN02L820)Shenzhen Science and Technology Program(Grant No.RCYX20231211090126026,the Stable Support Plan Program 20220810161616001)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.22XNKJ30)。
文摘Two-dimensional(2D)moirésuperlattices have emerged as a versatile platform for uncovering exotic quantum phases,many of which arise in bilayer systems exhibiting Archimedean tessellation patterns such as triangular,hexagonal,and kagome lattices.Here,we propose a strategy to engineer semiregular tessellation patterns in untwisted bilayer graphene by applying anisotropic epitaxial tensile strain(AETS)along crystallographic directions.Through force-field and firstprinciples calculations,we demonstrate that AETS can induce a rich variety of semiregular tessellation geometries,including truncated hextille,prismatic pentagon,and brick-phase arrangements.Characteristic electronic Dirac and flat bands of the lattice models associated with these semiregular tessellations are observed near the Fermi level,arising from interlayer interactions generated by the spatial rearrangement of AB,BA,and SP domains.Furthermore,the real-space observations of electronic kagome,distorted Lieb,brick-like,and one-dimensional stripe lattices demonstrate that AETS enables tunable semiregular tessellation lattices.Our study identifies AETS as a promising new degree of freedom in moiréengineering,offering a reproducible and scalable platform for exploring exotic electronic lattices in moirésystems.
文摘In this article, the authors mainly study how to obtain new semicontinuous lattices from the given semicontinuous lattices and discuss the conditions under which the image of a semicontinuous projection operator is also semicontinuous. Moreover, the authors investigate the relation between semicontinuous lattices and completely distributive lattices. Finally, it is proved that the strongly semicontinuous lattice category is a Cartesian closed category.
基金the Research Grants Council of the Hong Kong Special Administrative Region of China (GRF No. CityU11216515)City University of Hong Kong (Nos. 7005070 and 9667153)+1 种基金Shenzhen Science and Technology Innovation Committee under the grant JCYJ20170818103206501the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM5003)
文摘3D printing-based supercapacitors have been extensively explored,yet the rigid rheological requirement for corresponding ink preparation significantly limits the manufacturing of true 3D architecture in achieving superior energy storage.We proposed the stereolithographic technique to fabricate the metallic composite lattices with octet-truss arrangement by using electroless plating and engineering the 3D hierarchically porous graphene onto the scaffolds to build the hierarchically cellular lattices in quasi-solid supercapacitor application.The supercapacitor device that is composed of composite lattices span several pore size orders from nm to mm holds promising behavior on the areal capacitance(57.75 mF cm-2),rate capability(70% retention,2-40 mA cm-2),and long lifespan(96% after 5000 cycles),as well as superior energy density of 0.008 mWh cm-2,which are comparable to the state-of-the-art carbon-based supercapacitor.By synergistically combining this facile stereolithographic 3D printing technology with the hierarchically porous graphene architecture,we provide a novel route of manufacturing energy storage device as well as new insight into building other high-performance functional electronics.
基金supported by National Basic Research Program of China (Grant No 2006CB705500)Changjiang Scholars and Innovative Research Team in University (Grant No IRT0605)the National Natural Science Foundation of China (Grant No 70631001)
文摘In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by simulation. In particular, the large modularity Q can hold off the cascading failure dynamic process in community networks. Furthermore, different attack strategies also greatly affect the cascading failure dynamic process. It is particularly significant to control cascading failure process in real community networks.
基金supported by the National Natural Science Foundation of China under grant No.(U1636114, 61572521,61772550)Natural Science of Shaanxi Province of China under grant No.2018JM6078Innovative Research Team in Engineering University of PAP (KYTD201805)
文摘Identity-Based Proxy Re-Encryption (IB-PRE) allows a semi-trusted proxy to convert the ciphertext encrypted under Alice’s identity into Bob’s ciphertext of the same message without leaking plaintext. Lattice-based cryptography enjoys potential resistance to quantum analysis and low computational complexity. A multi-hop and unidirectional IB-PRE from lattices is presented. We split the functions of decryption and ciphertext transformation separately, and design the double private keys mechanism, where two keys are generated for each user, one key is used to decrypt the ciphertext by Pre-Image Sampling technique, and the other is used to generate the re-encryption key by Bonsai Trees technique. The generation of the re-encryption key is non-interactive and collusion resistant. Moreover, its IND-sID-CPA security over the decisional Learning With Errors (LWE) assumption under the standard model is proved. Compared with some previous IBPRE schemes from Bilinear Pairings, the format of transformed ciphertext in our scheme remains unchanged, furthermore, it can also resist quantum analysis. Compared with some existing IB-PRE schemes from lattices with similar properties, the space of the message in our scheme is a vector of length l and the encryption process remains a lower encryption blowup factor. At last, a proof-of-concept implementation is provided.
基金supported by the National Natural Science Foundation of China(Grant No.10875076)the Natural Science Foundation of Shaanxi Province,China(Grant No.SJ08A23)
文摘The partial and complete periodic synchronization in coupled discontinuous map lattices consisting of both discon- tinuous and non-invertible maps are discussed. We classify three typical types of periodic synchronization states, which give rise to different spatiotemporal patterns including static partial periodic synchronization, dynamically periodic syn- chronization, and complete periodic synchronization patterns. A special prelude dynamics of partial and complete periodic synchronization motion, which is shown by five separated concave curves in the time series plots of the order parameters, is observed. The detailed analysis shows that the special prelude dynamics is induced by the competition between two synchronized clusters, and the analytical expression for the corresponding order parameter is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10604042)the National Basic Research Program of China (Grant No. 2006CB302901)
文摘This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bloch modes which are excited from the extended photonie band-gap structure at Bloch wave-numbers with kx = 0. The DMs for both positive and negative defects are considered in this method.
基金the Key Research Foundation of the Education Bureau of Hunan Province of China under Grant No.08A015the Natural Science Foundation of Hunan Province of China under Grant No.06JJ2014 and 04JJ40006the National Natural Science Foundation of China under Grant No.10575034
文摘The chaotic ratchet effect for Bos-Einstein condensed atoms in an optical lattice is investigated. By using the direct perturbation method we obtain the chaotic solution of the condensed system. Theoretical analysis reveals that the transport of the condensed atoms in the ratchet potential is a chaotic one, and corresponding numerical results agree well with the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575064 and 11175067)the PCSIRT(Grant No.IRT1243)+2 种基金the GDUPS Project(2016)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2016A030313433 and 2017A030313029)the Innovation Project of Graduate School of South China Normal University
文摘Ratchet transport of overdamped particles is investigated in superimposed driven lattices using Langevin dynamics simulations. It is found that noise can strongly affect the transport of the particles. When lattices driving dominates the transport, the noise acts as a disturbance of the directed transport and slows down the average velocity of the particles.When the driving phase has less impact on particle transport, Gaussian white noise can play a positive role. By simply modulating these two parameters, we can control efficiency and the direction of the directed currents.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10774120 and 10975114)the Natural Science Foundation of Gansu Province of China (Grant No.1010RJZA012)the Natural Science Foundation of Northwest Normal University of China (Grant No.NWNU-KJCXGC-03-48)
文摘The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically. It is shown that, the analytical criteria for self-trapping and moving soliton/breather of the primary-component condensate are modified significantly by an admixture of an impurity component (the second component). The realization of the self-trapped state and the moving soliton/breather states of the primary-component becomes more easy with the minor admixture of the impurity-component, even if the two components are partly overlapped.
文摘Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate when the optimization objectives for an accelerator are equal to or greater than four. Recently, many-objective evolutionary algorithms(MaOEAs)that can solve problems with four or more optimization objectives have received extensive attention. In this study, two diffraction-limited storage ring(DLSR) lattices of the Extremely Brilliant Source(ESRF-EBS) type with different energies were designed and optimized using three MaOEAs and a widely used MOEA. The initial population was found to have a significant impact on the performance of the algorithms and was carefully studied. The performances of the four algorithms were compared, and the results demonstrated that the grid-based evolutionary algorithm(GrEA) had the best performance.Ma OEAs were applied in many-objective optimization of DLSR lattices for the first time, and lattices with natural emittances of 116 and 23 pm·rad were obtained at energies of 2 and 6 GeV, respectively, both with reasonable dynamic aperture and local momentum aperture(LMA). This work provides a valuable reference for future many-objective optimization of DLSRs.
基金supported by the 973 Program(No.2014CB049000,2011CB610304)National Natural Science Foundation of China(11372062,91216201)+2 种基金LNET Program(LJQ2013005)China Postdoctoral Science Foundation(2014M551070)111Project(B14013)
文摘Commercially available lattices contain various kinds of morphological imperfections which result in great degradation in lattices' mechanical properties, therefore, to obtain imperfection insensitive lattice structure is obviously a practical research subject. Hierarchical structure materials were found to be a class of promising anti-defect materials, This paper builds hierarchical lattice by adding soft adhesion to lattice's cell edges and numerical results show that its imperfection sensitivity to missing bars is minor compared with the classic lattice. Soft adhesion with appropriate properties reinforce cell edge's bending stiffness and thus reduce the bending deformation in lattice caused by missing bars defect, which is confirmed by statistical analysis of normalized node displacements of imperfect lattices under hydrostatic compression and shear loads.