期刊文献+
共找到3,716篇文章
< 1 2 186 >
每页显示 20 50 100
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
1
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (BP model) optimization
在线阅读 下载PDF
Optimization of convolutional neural networks for predicting water pollutants using spectral data in the middle and lower reaches of the Yangtze River Basin,China
2
作者 ZHANG Guohao LI Song +3 位作者 WANG Cailing WANG Hongwei YU Tao DAI Xiaoxu 《Journal of Mountain Science》 2025年第8期2851-2869,共19页
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t... Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control. 展开更多
关键词 Water pollutants Convolutional neural networks Data augmentation optimization algorithms Model evaluation methods Deep Learning
原文传递
Physics-informed neural network optimized by particle swarm algorithm for accurate prediction of blast-induced peak particle velocity
3
作者 Lang Qiu Yujie Zhu +3 位作者 Chen Xu Gaofeng Ren Yingguo Hu Xiaoli Liu 《Intelligent Geoengineering》 2025年第3期126-140,共15页
Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV pred... Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV prediction by combining conventional empirical equations with physics-informed neural networks(PINN)and optimizing the model parameters via the Particle Swarm Optimization(PSO)algorithm.The proposed PSO-PINN framework was rigorously benchmarked against seven established machine learning approaches:Multilayer Perceptron(MLP),Extreme Gradient Boosting(XGBoost),Random Forest(RF),Support Vector Regression(SVR),Gradient Boosting Decision Tree(GBDT),Adaptive Boosting(Adaboost),and Gene Expression Programming(GEP).Comparative analysis showed that PSO-PINN outperformed these models,achieving RMSE reductions of 17.82-37.63%,MSE reductions of 32.47-61.10%,AR improvements of 2.97-21.19%,and R^(2)enhancements of 7.43-29.21%,demonstrating superior accuracy and generalization.Furthermore,the study determines the impact of incorporating empirical formulas as physical constraints in neural networks and examines the effects of different empirical equations,particle swarm size,iteration count in PSO,regularization coefficient,and learning rate in PINN on model performance.Lastly,a predictive system for blast vibration PPV is designed and implemented.The research outcomes offer theoretical references and practical recommendations for blast vibration forecasting in similar engineering applications. 展开更多
关键词 Peak particle velocity Blast-induced vibration Particle Swarm optimization algorithm Physics-informed neural network Prediction system
在线阅读 下载PDF
Composite Structural Optimization by Genetic Algorithm and Neural Network Response Surface Modeling 被引量:14
4
作者 徐元铭 李烁 荣晓敏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期310-316,共7页
Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to s... Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces. 展开更多
关键词 neural network genetic algorithm response surface composite structural optimization
在线阅读 下载PDF
Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm 被引量:17
5
作者 Hong-li QI Hui ZHAO +1 位作者 Wei-wen LIU Hai-bo ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第8期1205-1212,共8页
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa... A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS. 展开更多
关键词 Grating eddy current displacement sensor (GECDS) Artificial neural network (ANN) Genetic algorithm (GA) Parameters optimization Nonlinearity error
原文传递
Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material 被引量:24
6
作者 CHANG Qing-liang ZHOU Hua-qiang HOU Chao-jiong 《Journal of China University of Mining and Technology》 EI 2008年第4期551-555,共5页
In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by appl... In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines. 展开更多
关键词 mining engineering paste filling material neural network particle swarm optimized algorithm prediction
在线阅读 下载PDF
Optimization of Processing Parameters of Power Spinning for Bushing Based on Neural Network and Genetic Algorithms 被引量:4
7
作者 Junsheng Zhao Yuantong Gu Zhigang Feng 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期606-616,共11页
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o... A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications. 展开更多
关键词 power SPINNING process parameters optimization BP neural network GENETIC algorithms (GA) response surface methodology (RSM)
在线阅读 下载PDF
Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms 被引量:7
8
作者 JoséD. MARTíNEZ-MORALES Elvia R. PALACIOS-HERNáNDEZ Gerardo A. VELáZQUEZ-CARRILLO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期657-670,共14页
In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (S... In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively. 展开更多
关键词 Engine calibration Multi-objective optimization neural networks Multiple objective particle swarm optimization(MOPSO) Nondominated sorting genetic algorithm II (NSGA-II)
原文传递
The Development of Highly Loaded Turbine Rotating Blades by Using 3D Optimization Design Method of Turbomachinery Blades Based on Artificial Neural Network & Genetic Algorithm 被引量:3
9
作者 周凡贞 冯国泰 蒋洪德 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第4期198-202,共5页
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg... In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%. 展开更多
关键词 optimization design highly loaded rotating blades artificial neural network genetic algorithm
在线阅读 下载PDF
Simulation and Optimization for Thermally Coupled Distillation Using Artificial Neural Network and Genetic Algorithm 被引量:3
10
作者 王延敏 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第3期307-311,共5页
In this paper, a new approach using artificial neural network and genetic algorithm for the optimization of the thermally coupled distillation is presented. Mathematical model can be constructed with artificial neura... In this paper, a new approach using artificial neural network and genetic algorithm for the optimization of the thermally coupled distillation is presented. Mathematical model can be constructed with artificial neural network based on the simulation results with ASPEN PLUS. Modified genetic algorithm was used to optimize the model. With the proposed model and optimization arithmetic, mathematical model can be calculated, decision variables and target value can be reached automatically and quickly. A practical example is used to demonstrate the algorithm. 展开更多
关键词 thermally coupled distillation neural network genetic algorithm SIMULATION optimization ASPEN PLUS
在线阅读 下载PDF
Parameters Optimization of Plasma Hardening Process Using Genetic Algorithm and Neural Network 被引量:2
11
作者 LIU Gu WANG Liu-ying +1 位作者 CHEN Gui-ming HUA Shao-chun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第12期57-64,共8页
Plasma surface hardening process was performed to improve the performance of the AISI 1045 carbon steel.Experiments were carried out to characterize the hardening qualities.A predicting and optimizing model using gene... Plasma surface hardening process was performed to improve the performance of the AISI 1045 carbon steel.Experiments were carried out to characterize the hardening qualities.A predicting and optimizing model using genetic algorithm-back propagation neural network(GA-BP) was developed based on the experimental results.The non-linear relationship between properties of hardening layers and process parameters was established.The results show that the GA-BP predicting model is reliable since prediction results are in rather good agreement with measured results.The optimal properties of the hardened layer were deduced from GA.And through multi optimizations,the optimum comprehensive performances of the hardened layer were as follows:plasma arc current is 90 A,hardening speed is 2.2 m/min,plasma gas flow rate is 6.0 L/min and hardening distance is 4.3 mm.It concludes that GA-BP mode developed in this study provides a promising method for plasma hardening parameters prediction and optimization. 展开更多
关键词 plasma transferred arc surface hardening optimization neural network genetic algorithm
原文传递
Optimization of Fermentation Media for Enhancing Nitrite-oxidizing Activity by Artificial Neural Network Coupling Genetic Algorithm 被引量:2
12
作者 罗剑飞 林炜铁 +1 位作者 蔡小龙 李敬源 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第5期950-957,共8页
Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Exper... Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium. 展开更多
关键词 BP neural network genetic algorithm optimization nitrite oxidization rate nitrite-oxidizing bacteria
在线阅读 下载PDF
Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network 被引量:3
13
作者 ZHANG Jun ZHAO Shenwei +1 位作者 WANG Yuanqiang ZHU Xinshan 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期209-219,共11页
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ... The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data. 展开更多
关键词 urban traffic short-term traffic flow forecasting social emotion optimization algorithm(SEOA) back-propagation neural network(BPNN) Metropolis rule
原文传递
An Efficient Hybrid Model Based on Modified Whale Optimization Algorithm and Multilayer Perceptron Neural Network for Medical Classification Problems 被引量:1
14
作者 Saeid Raziani Sajad Ahmadian +1 位作者 Seyed Mohammad Jafar Jalali Abdolah Chalechale 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第5期1504-1521,共18页
Feedforward Neural Network(FNN)is one of the most popular neural network models that is utilized to solve a wide range of nonlinear and complex problems.Several models such as stochastic gradient descent have been dev... Feedforward Neural Network(FNN)is one of the most popular neural network models that is utilized to solve a wide range of nonlinear and complex problems.Several models such as stochastic gradient descent have been developed to train FNNs.However,they mainly suffer from falling into local optima leading to reduce the accuracy of FNNs.Moreover,the convergence speed of training process depends on the initial values of weights and biases in FNNs.Generally,these values are randomly determined by most of the training models.To deal with these issues,in this paper,we develop a novel evolutionary algorithm by modifying the original version of Whale Optimization Algorithm(WOA).To this end,a nonlinear function is introduced to improve the exploration and exploitation phases in the search process of WOA.Then,the modified WOA is applied to automatically obtain the initial values of weights and biases in FNN leading to reduce the probability of falling into local optima.In addition,the FNN model trained by the modified WOA is used to develop a classification approach for medical diagnosis problems.Ten medical diagnosis datasets are utilized to evaluate the efficiency of the proposed method.Also,four evaluation metrics including accuracy,AUC,specificity,and sensitivity are used in the experiments to compare the performance of classification models.The experimental results demonstrate that the proposed method is better than other competing classification models due to achieving higher values of accuracy,AUC,specificity,and sensitivity metrics for the used datasets. 展开更多
关键词 Feed forward neural network Meta-heuristic algorithm Whale optimization algorithm optimization CLASSIFICATION Bionic algorithm
在线阅读 下载PDF
Optimization of a crude distillation unit using a combination of wavelet neural network and line-up competition algorithm 被引量:3
15
作者 Bin Shi Xu Yang Liexiang Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1013-1021,共9页
The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modelin... The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3). 展开更多
关键词 Crude oil distillation Wavelet neural network Line-up competition algorithm optimization
在线阅读 下载PDF
E-mail Spam Classification Using Grasshopper Optimization Algorithm and Neural Networks 被引量:1
16
作者 Sanaa A.A.Ghaleb Mumtazimah Mohamad +1 位作者 Syed Abdullah Fadzli Waheed A.H.M.Ghanem 《Computers, Materials & Continua》 SCIE EI 2022年第6期4749-4766,共18页
Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it ... Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it limits the storage space of the email box as well as the disk space.Thus,spam detection is a challenge for individuals and organizations alike.To advance spam email detection,this work proposes a new spam detection approach,using the grasshopper optimization algorithm(GOA)in training a multilayer perceptron(MLP)classifier for categorizing emails as ham and spam.Hence,MLP and GOA produce an artificial neural network(ANN)model,referred to(GOAMLP).Two corpora are applied Spam Base and UK-2011Web spam for this approach.Finally,the finding represents evidence that the proposed spam detection approach has achieved a better level in spam detection than the status of the art. 展开更多
关键词 Grasshopper optimization algorithm multilayer perceptron artificial neural network spam detection approach
在线阅读 下载PDF
Parameters Optimization of the Heating Furnace Control Systems Based on BP Neural Network Improved by Genetic Algorithm 被引量:4
17
作者 Qiong Wang Xiaokan Wang 《Journal on Internet of Things》 2020年第2期75-80,共6页
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ... The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace. 展开更多
关键词 Genetic algorithm parameter optimization PID control BP neural network heating furnace
在线阅读 下载PDF
Neural Network Predictive Control of Variable-pitch Wind Turbines Based on Small-world Optimization Algorithm 被引量:8
18
作者 WANG Shuangxin LI Zhaoxia LIU Hairui 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0015-I0015,17,共1页
通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述... 通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述方法应用于变桨距风电机组启动并网时的转速控制,提出一种基于混沌小世界优化算法的神经网络预测控制策略,其预测模型由基于现场数据的神经网络模型建立。仿真与实际测试结果表明,该系统可以根据风速扰动提前预测电机的转速变化,使控制器超前动作,保证系统输出跟踪参考轨迹的方向稳步改变,确保风电机组平稳并网。 展开更多
关键词 优化算法 小世界 风力发电机组 预测控制 神经网络 变桨距 实时编码 混沌映射
原文传递
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
19
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
20
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) Convolutional neural network(CNN)
在线阅读 下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部