Cu_(2)ZnSnSSe_(4)(CZTSSe)thin film solar cells,with adjustable bandgap and rich elemental content,hold promise in next-gen photovoltaics.Crystalline quality is pivotal for efficient light absorption and carrier transp...Cu_(2)ZnSnSSe_(4)(CZTSSe)thin film solar cells,with adjustable bandgap and rich elemental content,hold promise in next-gen photovoltaics.Crystalline quality is pivotal for efficient light absorption and carrier transport.During the post-selenization process,understanding crystal growth mechanisms,and improving layer quality are essential.We explored the effects of ramp rate and annealing temperature on CZTSSe films,using X-ray diffraction(XRD),Raman spectroscopy,scanning electron microscope(SEM),and ultraviolet-visual spectrophotometry(UV-Vis).The optimal performance occurred at 25.25°C/min ramp rate and 530°C annealing.This led to smoother surfaces,higher density,and larger grains.This condition produced a single-layer structure with large grains,no secondary phases,and a 1.14 eV bandgap,making it promising for photovoltaic applications.The study has highlighted the effect of selenization conditions on the characteristics of the CZTSSe absorber layer and has provided valuable information for developing CZTSSe thin film solar cells.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and...We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and tested using X-ray diffraction(XRD),transmission electron microscopy(TEM),and vibrating sample magnetometer(VSM),respectively.The results demonstrate that the coercivity of CoPt nanoparticles can be effectively controlled by adjusting the atomic ratio of Co and Pt in the samples.Among the compositions studied,the Co_(45)Pt_(55)sample synthesized by the sol-gel method exhibits smaller grain size and a coercivity as high as 6.65×10^(5) A/m is achieved.The morphology and microstructure of the nanoparticles were analyzed by TEM images,indicating that a slight excess of Pt can effectively enhance the coercivity of CoPt nanoparticles.展开更多
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m...In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.展开更多
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision...Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.展开更多
The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environmen...The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systema...At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.展开更多
The precursor sol of alumina was prepared by sol-gel method with aluminum nitrate and malic acid as raw materials.The effects of content of malic acid and polyvinylpyrrolidone (PVP) on sol spinnability were explored...The precursor sol of alumina was prepared by sol-gel method with aluminum nitrate and malic acid as raw materials.The effects of content of malic acid and polyvinylpyrrolidone (PVP) on sol spinnability were explored.The gel fibers with above 80 cm in length were obtained by mixing aluminum nitrate,malic acid and PVP on mass ratio of 10 3 1.5.Thermogravimetry-differential scanning calorimetry (TG-DSC),Fourier transform infrared (FTIR) spectrum,X-ray diffractometry (XRD),and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers.The alumina fibers with a smooth surface and about 20μm in diameter were obtained by sintering at 1 200℃,and their main phase was indentified to be α-Al2O3.展开更多
The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to...The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO4/C. The XRD studies show that the pure olivine phase LiMnPO4 can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO4/C well. The LiMnPO4/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA-h/g, retaining 112.4 mA-h/g over 30 cycles at 0.05C rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO4/C.展开更多
Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface...Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.展开更多
Nanosized ZnWO4 photocatalysts were successfully synthesized via the sol-gel process in a temperature range of 450-800℃. The grain size, crystal size, and crystallinity of ZnWO4 particles increased with the increase ...Nanosized ZnWO4 photocatalysts were successfully synthesized via the sol-gel process in a temperature range of 450-800℃. The grain size, crystal size, and crystallinity of ZnWO4 particles increased with the increase of calcina- tion temperature and prolonging calcination time. The photocatalytic activity was measured for the degradation of an aqueous Rhodamine-B(RhB) solution and gaseous formaldehyde(FAD). With the increase of calcination temperature and time, the activities increased to a maximum and then decreased. ZnWO4 photocatalyst prepared at 550℃ for I0 h showed the highest activity, which is similar to the photocatalytic activity of P25TiO2 for the degradation of gase-ous FAD. High crystallinity, large surface area, and good dispersion are responsible for the high photocatalytic per- formance of the prepared ZnWO4.展开更多
Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstl...Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstly, a volumetric heat source defined by a double ellipsoid is adopted to simulate the thermal distributions of the arc welding process. And then, the local models extracted from the global model are computed with refined meshes. On these bases, the global distortions of the subject studied are ascertained by transferring the inner forces of computed local models to the global model. It indicates that the local-global method is feasible for simulating the large welded structures by comparing the computed results with the corresponding actual measured values. The work provides basis for optimizing the welding sequence and clamping conditions, and has theoretical values and engineering significance in the integral design, manufacturing technique selection of the bogie frame, as well as other kinds of large welded structures.展开更多
Nanocrystal SmBO3 powders were synthesized by nitrate-citrate sol-gel combustion method. The phase evolution, morphologies and absorbency of the synthesized powders were characterized by X-ray diffraction (XRD), Fie...Nanocrystal SmBO3 powders were synthesized by nitrate-citrate sol-gel combustion method. The phase evolution, morphologies and absorbency of the synthesized powders were characterized by X-ray diffraction (XRD), Field emission scanning electronic microscope (FESEM), Fourier transform infrared spectroscopy (FFIR) and UV-3101PC spectrophotometer (UVPC), respectively. XRD and FESEM results showed that pure SmBO3 phase was obtained at 750 ℃, with an average original particle size of about 100 nm. FTIR showed that there were apparently concentrated absorbent peaks between 500 and 1400 cm^-1. Moreover, the reflectivity of the powders apparently decreased at the wavelength between 1.05 and 1.15 μm. Therefore, SmBO3 might be a kind of absorbent material for infrared laser.展开更多
Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness , crystalline phase, grain size, surface hydroxyl amount and so on were...Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness , crystalline phase, grain size, surface hydroxyl amount and so on were characterized by scanning electron microscopy (SEM) , X-ray diffraction (XRD), transmission electron microscopy ( TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer ( UV-VIS). The photocatalytic activity of TiO2 thin films was evaluated for the photocatalytic decolorization of aqueous methyl orange . The effects of film thickness on the crystalline phase, grain size, transmittance and photocatalytic activity of nanometer Ti02 thin films were discussed.展开更多
To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vi...To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.展开更多
Titanium dioxide nanoparticles modified with neodymium in the range of 1 mol% to 5 mol% were prepared with template-free sol-gel method.The structures of obtained samples were characterized by X-ray powder diffraction...Titanium dioxide nanoparticles modified with neodymium in the range of 1 mol% to 5 mol% were prepared with template-free sol-gel method.The structures of obtained samples were characterized by X-ray powder diffraction analysis.X-ray photoelectron spectroscopy,scanning electron microscopy,transmission electron microscopy and diffuse reflectance spectroscopy.The photocatalytic activity of the obtained samples was evaluated by photodegradation of methyl orange in aqueous solution under ultraviolet-visible(λ> 350 nm) and visible(λ> 420 nm) irradiation.The experimental results show that the 1 mol% Nd-doped TiO2 exhibits the highest photocatalytic activity,of which the degradation can reach to 96.5% under visible irradiation.According to the XRD results,the pristine samples are combined with anatase TiO2 and rutile TiO2.while the Nd-doped TiO2 samples are anatase TiO2 only.This transformation has made an obvious promotion of photocatalyst activity after modification.展开更多
A series of red-emitting Ca2_xA12SiOT:xEu^3+ (x = 1 mol.%-10 tool.%) phosphors were synthesized by the sol-gel method. The effects of annealing temperature and doping concentration on the crystal structure and lum...A series of red-emitting Ca2_xA12SiOT:xEu^3+ (x = 1 mol.%-10 tool.%) phosphors were synthesized by the sol-gel method. The effects of annealing temperature and doping concentration on the crystal structure and luminescence properties of Ca2A12SiO7:Eu^3+ phosphors were investigated. X-ray diffraction (XRD) profiles showed that all peaks could be attributed to the tetragonal Ca2A12SiO7 phase when the sample was annealed at 1000℃. Scanning electron microscopy (SEM) micrographs indicate that the phosphors have an irregularly rounded mor- phology with particles of about 200 nm. Excitation spectra showed that the strong broad band at around 258 nm and weak sharp lines in 350-490 nm were attributed to the charge transfer band of Eu^3+-O^2- and f-f transitions within the 4f^6 configuration of Eu^3+ ions, respectively. Emission spectra implied that the red luminescence could be attributed to the transitions from the ^5D0 excited level to the 7Fj (J = 0, 1, 2, 3, 4) levels of Eu3+ions with the main electric dipole transition ^5D0→^7F2 (618 and 620 nm), and Eu^3+ ions prefer to occupy a lower symmetry site in the crystal lattice. Moreover, the photoluminescence (PL) intensity was strongly dependent on both the sintering temperature and doping concentration, and the highest PL intensity was observed at an Eu^3+ concentration x = 7 mol.% after annealing at ll00℃. The obtained Ca2A12SiO7:Eu^+3+ phosphor may have potential application for the red lamp phosphor.展开更多
Mixed strontium-yttrium borate phosphor Sr3Y2(BO3)4 doped with Eu^3+ ions was obtained by the sol-gel Pechini method. Crystal structure of the synthesized compound was analyzed by X-ray powder diffraction. Optimal ...Mixed strontium-yttrium borate phosphor Sr3Y2(BO3)4 doped with Eu^3+ ions was obtained by the sol-gel Pechini method. Crystal structure of the synthesized compound was analyzed by X-ray powder diffraction. Optimal conditions for the synthesis were found. Photophysical properties of the phosphor samples were investigated by collecting excitation and luminescence spectra as well as measuring lumi- nescence lifetime. Judd-Ofelt analysis showed that Eu^3+ ions occupied Y^3+ sites in the crystalline network. The studied compound showed a red emission with the quantum yield of 54%-55% and can be potentially used as phosphor for plasma display panels and luminescent tubes.展开更多
The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction per...The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.展开更多
基金supported by the Science and Technology Innovation Development Program(No.70304901).
文摘Cu_(2)ZnSnSSe_(4)(CZTSSe)thin film solar cells,with adjustable bandgap and rich elemental content,hold promise in next-gen photovoltaics.Crystalline quality is pivotal for efficient light absorption and carrier transport.During the post-selenization process,understanding crystal growth mechanisms,and improving layer quality are essential.We explored the effects of ramp rate and annealing temperature on CZTSSe films,using X-ray diffraction(XRD),Raman spectroscopy,scanning electron microscope(SEM),and ultraviolet-visual spectrophotometry(UV-Vis).The optimal performance occurred at 25.25°C/min ramp rate and 530°C annealing.This led to smoother surfaces,higher density,and larger grains.This condition produced a single-layer structure with large grains,no secondary phases,and a 1.14 eV bandgap,making it promising for photovoltaic applications.The study has highlighted the effect of selenization conditions on the characteristics of the CZTSSe absorber layer and has provided valuable information for developing CZTSSe thin film solar cells.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Funded by the National Natural Science Foundation of China(No.52371169)。
文摘We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and tested using X-ray diffraction(XRD),transmission electron microscopy(TEM),and vibrating sample magnetometer(VSM),respectively.The results demonstrate that the coercivity of CoPt nanoparticles can be effectively controlled by adjusting the atomic ratio of Co and Pt in the samples.Among the compositions studied,the Co_(45)Pt_(55)sample synthesized by the sol-gel method exhibits smaller grain size and a coercivity as high as 6.65×10^(5) A/m is achieved.The morphology and microstructure of the nanoparticles were analyzed by TEM images,indicating that a slight excess of Pt can effectively enhance the coercivity of CoPt nanoparticles.
基金supported by Anhui Provincial Natural Science Foundation(2408085QA030)Natural Science Research Project of Anhui Educational Committee,China(2022AH050825)+3 种基金Medical Special Cultivation Project of Anhui University of Science and Technology(YZ2023H2C008)the Excellent Research and Innovation Team of Anhui Province,China(2022AH010052)the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology,China(2021yjrc51)Collaborative Innovation Program of Hefei Science Center,CAS,China(2019HSC-CIP006).
文摘In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.
基金funded by the Beijing Engineering Research Center of Electric Rail Transportation.
文摘Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.
基金supported by the National Key Research and Develop-ment Program(No.2022YFC3701103)the National Natural Science Foundation of China(Nos.42130714 and 41931287).
文摘The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by the National Natural Science Foundation of China(Project No.42307555).
文摘At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.
基金Project(2010K10-21) supported by the Natural Science Foundation of Shaanxi Province,China
文摘The precursor sol of alumina was prepared by sol-gel method with aluminum nitrate and malic acid as raw materials.The effects of content of malic acid and polyvinylpyrrolidone (PVP) on sol spinnability were explored.The gel fibers with above 80 cm in length were obtained by mixing aluminum nitrate,malic acid and PVP on mass ratio of 10 3 1.5.Thermogravimetry-differential scanning calorimetry (TG-DSC),Fourier transform infrared (FTIR) spectrum,X-ray diffractometry (XRD),and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers.The alumina fibers with a smooth surface and about 20μm in diameter were obtained by sintering at 1 200℃,and their main phase was indentified to be α-Al2O3.
基金Project (0991025) supported by Natural Science Foundation of Guangxi, ChinaProject (51164007) supported by the National Natural Science Foundation of ChinaProject (201101ZD008) supported by Educational Commission of Guangxi, China
文摘The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO4/C. The XRD studies show that the pure olivine phase LiMnPO4 can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO4/C well. The LiMnPO4/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA-h/g, retaining 112.4 mA-h/g over 30 cycles at 0.05C rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO4/C.
文摘Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.
基金Supported by the National Natural Science Foundation of China(Nos.20433010and20571047)Specialized Research Fundfor the Doctoral Program of Higher Education(No.20060003082).
文摘Nanosized ZnWO4 photocatalysts were successfully synthesized via the sol-gel process in a temperature range of 450-800℃. The grain size, crystal size, and crystallinity of ZnWO4 particles increased with the increase of calcina- tion temperature and prolonging calcination time. The photocatalytic activity was measured for the degradation of an aqueous Rhodamine-B(RhB) solution and gaseous formaldehyde(FAD). With the increase of calcination temperature and time, the activities increased to a maximum and then decreased. ZnWO4 photocatalyst prepared at 550℃ for I0 h showed the highest activity, which is similar to the photocatalytic activity of P25TiO2 for the degradation of gase-ous FAD. High crystallinity, large surface area, and good dispersion are responsible for the high photocatalytic per- formance of the prepared ZnWO4.
文摘Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstly, a volumetric heat source defined by a double ellipsoid is adopted to simulate the thermal distributions of the arc welding process. And then, the local models extracted from the global model are computed with refined meshes. On these bases, the global distortions of the subject studied are ascertained by transferring the inner forces of computed local models to the global model. It indicates that the local-global method is feasible for simulating the large welded structures by comparing the computed results with the corresponding actual measured values. The work provides basis for optimizing the welding sequence and clamping conditions, and has theoretical values and engineering significance in the integral design, manufacturing technique selection of the bogie frame, as well as other kinds of large welded structures.
基金supported by the 973 Research Project of China (6134502)
文摘Nanocrystal SmBO3 powders were synthesized by nitrate-citrate sol-gel combustion method. The phase evolution, morphologies and absorbency of the synthesized powders were characterized by X-ray diffraction (XRD), Field emission scanning electronic microscope (FESEM), Fourier transform infrared spectroscopy (FFIR) and UV-3101PC spectrophotometer (UVPC), respectively. XRD and FESEM results showed that pure SmBO3 phase was obtained at 750 ℃, with an average original particle size of about 100 nm. FTIR showed that there were apparently concentrated absorbent peaks between 500 and 1400 cm^-1. Moreover, the reflectivity of the powders apparently decreased at the wavelength between 1.05 and 1.15 μm. Therefore, SmBO3 might be a kind of absorbent material for infrared laser.
基金This work was financially supported by Foundation for Uni-versity Key Teacher by the Ministry of Education, the National Natu-ral Science Foundation of China (No. 50072016) and the Key Re-search Project of the Ministry of Education(No.99087)
文摘Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness , crystalline phase, grain size, surface hydroxyl amount and so on were characterized by scanning electron microscopy (SEM) , X-ray diffraction (XRD), transmission electron microscopy ( TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer ( UV-VIS). The photocatalytic activity of TiO2 thin films was evaluated for the photocatalytic decolorization of aqueous methyl orange . The effects of film thickness on the crystalline phase, grain size, transmittance and photocatalytic activity of nanometer Ti02 thin films were discussed.
基金Projects (21207093,51004072) supported by the National Natural Science Foundation of China for YouthProject (LJQ2014023) supported by the Liaoning Excellent Talents in University,China+1 种基金Project (L20150178) supported by the General Scientific Research Projects Foundation of Liaoning Educational Committee,ChinaProject (N140303002) supported by the Fundamental Research Funds for the Central Universities,China
文摘To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.
基金supported by the National Natural Science Foundation of China(51275203)Key Scientific and Technological Project of Jilin Province(20140204052GX,20180201074GX)+2 种基金China Postdoctoral Science Foundation(2017M611321)Project of Education Department of Jilin Province(JJKH20180130KJ)Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,College of Chemistry,Jilin University(2019-8).
文摘Titanium dioxide nanoparticles modified with neodymium in the range of 1 mol% to 5 mol% were prepared with template-free sol-gel method.The structures of obtained samples were characterized by X-ray powder diffraction analysis.X-ray photoelectron spectroscopy,scanning electron microscopy,transmission electron microscopy and diffuse reflectance spectroscopy.The photocatalytic activity of the obtained samples was evaluated by photodegradation of methyl orange in aqueous solution under ultraviolet-visible(λ> 350 nm) and visible(λ> 420 nm) irradiation.The experimental results show that the 1 mol% Nd-doped TiO2 exhibits the highest photocatalytic activity,of which the degradation can reach to 96.5% under visible irradiation.According to the XRD results,the pristine samples are combined with anatase TiO2 and rutile TiO2.while the Nd-doped TiO2 samples are anatase TiO2 only.This transformation has made an obvious promotion of photocatalyst activity after modification.
基金supported by the National Natural Science Foundation of China (No. 10874160)the Science and Technology Foundation of Guangdong Province,China (No. 2007173)the Science and Technology Foundation of Jiangmen City, China (No. 2007028)
文摘A series of red-emitting Ca2_xA12SiOT:xEu^3+ (x = 1 mol.%-10 tool.%) phosphors were synthesized by the sol-gel method. The effects of annealing temperature and doping concentration on the crystal structure and luminescence properties of Ca2A12SiO7:Eu^3+ phosphors were investigated. X-ray diffraction (XRD) profiles showed that all peaks could be attributed to the tetragonal Ca2A12SiO7 phase when the sample was annealed at 1000℃. Scanning electron microscopy (SEM) micrographs indicate that the phosphors have an irregularly rounded mor- phology with particles of about 200 nm. Excitation spectra showed that the strong broad band at around 258 nm and weak sharp lines in 350-490 nm were attributed to the charge transfer band of Eu^3+-O^2- and f-f transitions within the 4f^6 configuration of Eu^3+ ions, respectively. Emission spectra implied that the red luminescence could be attributed to the transitions from the ^5D0 excited level to the 7Fj (J = 0, 1, 2, 3, 4) levels of Eu3+ions with the main electric dipole transition ^5D0→^7F2 (618 and 620 nm), and Eu^3+ ions prefer to occupy a lower symmetry site in the crystal lattice. Moreover, the photoluminescence (PL) intensity was strongly dependent on both the sintering temperature and doping concentration, and the highest PL intensity was observed at an Eu^3+ concentration x = 7 mol.% after annealing at ll00℃. The obtained Ca2A12SiO7:Eu^+3+ phosphor may have potential application for the red lamp phosphor.
基金Project supported by International Visegrad Fund (51000547 (2010-2011))
文摘Mixed strontium-yttrium borate phosphor Sr3Y2(BO3)4 doped with Eu^3+ ions was obtained by the sol-gel Pechini method. Crystal structure of the synthesized compound was analyzed by X-ray powder diffraction. Optimal conditions for the synthesis were found. Photophysical properties of the phosphor samples were investigated by collecting excitation and luminescence spectra as well as measuring lumi- nescence lifetime. Judd-Ofelt analysis showed that Eu^3+ ions occupied Y^3+ sites in the crystalline network. The studied compound showed a red emission with the quantum yield of 54%-55% and can be potentially used as phosphor for plasma display panels and luminescent tubes.
基金supported by the Jiangxi Provincial Department of Education
文摘The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.