The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack prob...The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.展开更多
A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computatio...A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computational results show that the RWCEA performs better than a weight-coded evolutionary algorithm pro-posed by Raidl (1999) and to some existing benchmarks, it can yield better results than the ones reported in the OR-library.展开更多
In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expectation efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis a...In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expectation efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis and research. Through analyzing the study of 30 groups of 0-1 knapsack problem from discrete coefficient of the data, we can find that dynamic expectation model can solve the following two types of knapsack problem. Compared to artificial glowworm swam algorithm, the convergence speed of this algorithm is ten times as fast as that of artificial glowworm swam algorithm, and the storage space of this algorithm is one quarter that of artificial glowworm swam algorithm. To sum up, it can be widely used in practical problems.展开更多
A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2 n/4 ) 1-ε ...A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2 n/4 ) 1-ε processors, 0≤ ε ≤1, and O(2 n/2 ) memory to find a solution for the n -element knapsack problem in time O(2 n/4 (2 n/4 ) ε) . The cost of the proposed parallel algorithm is O(2 n/2 ) , which is an optimal method for solving the knapsack problem without memory conflicts and an improved result over the past researches.展开更多
The multiple knapsack problem denoted by MKP (B,S,m,n) can be defined as fol- lows.A set B of n items and a set Sof m knapsacks are given such thateach item j has a profit pjand weightwj,and each knapsack i has a ca...The multiple knapsack problem denoted by MKP (B,S,m,n) can be defined as fol- lows.A set B of n items and a set Sof m knapsacks are given such thateach item j has a profit pjand weightwj,and each knapsack i has a capacity Ci.The goal is to find a subset of items of maximum profit such that they have a feasible packing in the knapsacks.MKP(B,S,m,n) is strongly NP- Complete and no polynomial- time approximation algorithm can have an approxima- tion ratio better than0 .5 .In the last ten years,semi- definite programming has been empolyed to solve some combinatorial problems successfully.This paper firstly presents a semi- definite re- laxation algorithm (MKPS) for MKP (B,S,m,n) .It is proved that MKPS have a approxima- tion ratio better than 0 .5 for a subclass of MKP (B,S,m,n) with n≤ 1 0 0 ,m≤ 5 and maxnj=1{ wj} minmi=1{ Ci} ≤ 2 3 .展开更多
Based on the two-list algorithm and the parallel three-list algorithm, an improved parallel three-list algorithm for knapsack problem is proposed, in which the method of divide and conquer, and parallel merging withou...Based on the two-list algorithm and the parallel three-list algorithm, an improved parallel three-list algorithm for knapsack problem is proposed, in which the method of divide and conquer, and parallel merging without memory conflicts are adopted. To find a solution for the n-element knapsack problem, the proposed algorithm needs O(2^3n/8) time when O(2^3n/8) shared memory units and O(2^n/4) processors are available. The comparisons between the proposed algorithm and 10 existing algorithms show that the improved parallel three-fist algorithm is the first exclusive-read exclusive-write (EREW) parallel algorithm that can solve the knapsack instances in less than O(2^n/2) time when the available hardware resource is smaller than O(2^n/2) , and hence is an improved result over the past researches.展开更多
In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to ...In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.展开更多
我们考察组合优化中的若干基础问题,包括背包问题、子集和问题以及卷积问题。我们希望探索这些问题运行时间最优的算法,即在某些广为接受的复杂性假设下该算法的运行时间应当是(几乎)最优的。最近几年,利用加性组合对经典组合优化问题...我们考察组合优化中的若干基础问题,包括背包问题、子集和问题以及卷积问题。我们希望探索这些问题运行时间最优的算法,即在某些广为接受的复杂性假设下该算法的运行时间应当是(几乎)最优的。最近几年,利用加性组合对经典组合优化问题的算法研究取得了重要的进展,特别地,对背包与子集和问题的若干变种,研究者们得到了运行时间与复杂性下界几乎一致的伪多项式时间算法和多项式时间近似方案。本文将选择其中具有代表性的若干成果展开综述,旨在展示目前已经被研究者们所注意到的加性组合定理与离散优化问题间的联系。特别地,我们将探讨:(ⅰ)有限加和定理及其在背包问题与子集和问题中的应用;(ⅱ) S zemerédi-Vu和集定理及其在子集和问题中的应用;(ⅲ) Balog-Szemerédi-Gowers定理及其在有解单调卷积问题中的应用。展开更多
In this paper a simulated annealing(SA)algorithm is presented for the 0/1 mul- tidimensional knapsack problem.Problem-specific knowledge is incorporated in the algorithm description and evaluation of parameters in ord...In this paper a simulated annealing(SA)algorithm is presented for the 0/1 mul- tidimensional knapsack problem.Problem-specific knowledge is incorporated in the algorithm description and evaluation of parameters in order to look into the perfor- mance of finite-time implementations of SA.Computational results show that SA per- forms much better than a genetic algorithm in terms of solution time,whilst having a modest loss of solution quality.展开更多
This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equil...This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equilibrium and PE Stackelberg Nash equilibrium. In order to improve the computational efficiency of the uncertain solution, several operators (binary coding distance, inversion operator, explosion operator and binary back learning operator) are applied to the basic fireworks algorithm to design the binary backward fireworks algorithm (BBFWA), which has a good performance in solving the BKP. As an illustration, a case study of the UBKP model and the P-E uncertain solution is applied to an armaments transportation problem.展开更多
Knapsack problem is one kind of NP-Complete problem. Unbounded knapsack problems are more complex and harder than general knapsack problem. In this paper,we apply QGAs (Quantum Genetic Algorithms) to solve unbounded k...Knapsack problem is one kind of NP-Complete problem. Unbounded knapsack problems are more complex and harder than general knapsack problem. In this paper,we apply QGAs (Quantum Genetic Algorithms) to solve unbounded knapsack problem and then follow other procedures. First,present the problem into the mode of QGAs and figure out the corresponding genes types and their fitness functions. Then,find the perfect combination of limitation and largest benefit. Finally,the best solution will be found. Primary experiment indicates that our method has well results.展开更多
Aiming at constructing the multi-knapsack model of collaborative portfolio configurations in multi-strategy oriented, the hybrid evolutionary algorithm was designed based on greedy method, combining with the organizat...Aiming at constructing the multi-knapsack model of collaborative portfolio configurations in multi-strategy oriented, the hybrid evolutionary algorithm was designed based on greedy method, combining with the organization of the multiple strategical guidance and multi-knapsack model. Furthermore, the organizing resource utility and risk management of portfolio were considered. The experiments were conducted on three main technological markets which contain communication, transportation and industry. The results demonstrated that the proposed model and algorithm were feasible and reliable.展开更多
基金supported by the National Natural Science Foundation of China(70871081)the Shanghai Leading Academic Discipline Project(S30504).
文摘The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.
文摘A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computational results show that the RWCEA performs better than a weight-coded evolutionary algorithm pro-posed by Raidl (1999) and to some existing benchmarks, it can yield better results than the ones reported in the OR-library.
文摘In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expectation efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis and research. Through analyzing the study of 30 groups of 0-1 knapsack problem from discrete coefficient of the data, we can find that dynamic expectation model can solve the following two types of knapsack problem. Compared to artificial glowworm swam algorithm, the convergence speed of this algorithm is ten times as fast as that of artificial glowworm swam algorithm, and the storage space of this algorithm is one quarter that of artificial glowworm swam algorithm. To sum up, it can be widely used in practical problems.
文摘A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2 n/4 ) 1-ε processors, 0≤ ε ≤1, and O(2 n/2 ) memory to find a solution for the n -element knapsack problem in time O(2 n/4 (2 n/4 ) ε) . The cost of the proposed parallel algorithm is O(2 n/2 ) , which is an optimal method for solving the knapsack problem without memory conflicts and an improved result over the past researches.
基金Supported by the National Natural Science Foundation of China(1 9971 0 78)
文摘The multiple knapsack problem denoted by MKP (B,S,m,n) can be defined as fol- lows.A set B of n items and a set Sof m knapsacks are given such thateach item j has a profit pjand weightwj,and each knapsack i has a capacity Ci.The goal is to find a subset of items of maximum profit such that they have a feasible packing in the knapsacks.MKP(B,S,m,n) is strongly NP- Complete and no polynomial- time approximation algorithm can have an approxima- tion ratio better than0 .5 .In the last ten years,semi- definite programming has been empolyed to solve some combinatorial problems successfully.This paper firstly presents a semi- definite re- laxation algorithm (MKPS) for MKP (B,S,m,n) .It is proved that MKPS have a approxima- tion ratio better than 0 .5 for a subclass of MKP (B,S,m,n) with n≤ 1 0 0 ,m≤ 5 and maxnj=1{ wj} minmi=1{ Ci} ≤ 2 3 .
文摘Based on the two-list algorithm and the parallel three-list algorithm, an improved parallel three-list algorithm for knapsack problem is proposed, in which the method of divide and conquer, and parallel merging without memory conflicts are adopted. To find a solution for the n-element knapsack problem, the proposed algorithm needs O(2^3n/8) time when O(2^3n/8) shared memory units and O(2^n/4) processors are available. The comparisons between the proposed algorithm and 10 existing algorithms show that the improved parallel three-fist algorithm is the first exclusive-read exclusive-write (EREW) parallel algorithm that can solve the knapsack instances in less than O(2^n/2) time when the available hardware resource is smaller than O(2^n/2) , and hence is an improved result over the past researches.
文摘In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.
文摘我们考察组合优化中的若干基础问题,包括背包问题、子集和问题以及卷积问题。我们希望探索这些问题运行时间最优的算法,即在某些广为接受的复杂性假设下该算法的运行时间应当是(几乎)最优的。最近几年,利用加性组合对经典组合优化问题的算法研究取得了重要的进展,特别地,对背包与子集和问题的若干变种,研究者们得到了运行时间与复杂性下界几乎一致的伪多项式时间算法和多项式时间近似方案。本文将选择其中具有代表性的若干成果展开综述,旨在展示目前已经被研究者们所注意到的加性组合定理与离散优化问题间的联系。特别地,我们将探讨:(ⅰ)有限加和定理及其在背包问题与子集和问题中的应用;(ⅱ) S zemerédi-Vu和集定理及其在子集和问题中的应用;(ⅲ) Balog-Szemerédi-Gowers定理及其在有解单调卷积问题中的应用。
基金This work was supported by the National Natural Science Foundation of China (No. 10201026, 10672111).
文摘In this paper a simulated annealing(SA)algorithm is presented for the 0/1 mul- tidimensional knapsack problem.Problem-specific knowledge is incorporated in the algorithm description and evaluation of parameters in order to look into the perfor- mance of finite-time implementations of SA.Computational results show that SA per- forms much better than a genetic algorithm in terms of solution time,whilst having a modest loss of solution quality.
基金supported by the National Natural Science Foundation of China(7160118361502522)
文摘This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equilibrium and PE Stackelberg Nash equilibrium. In order to improve the computational efficiency of the uncertain solution, several operators (binary coding distance, inversion operator, explosion operator and binary back learning operator) are applied to the basic fireworks algorithm to design the binary backward fireworks algorithm (BBFWA), which has a good performance in solving the BKP. As an illustration, a case study of the UBKP model and the P-E uncertain solution is applied to an armaments transportation problem.
文摘Knapsack problem is one kind of NP-Complete problem. Unbounded knapsack problems are more complex and harder than general knapsack problem. In this paper,we apply QGAs (Quantum Genetic Algorithms) to solve unbounded knapsack problem and then follow other procedures. First,present the problem into the mode of QGAs and figure out the corresponding genes types and their fitness functions. Then,find the perfect combination of limitation and largest benefit. Finally,the best solution will be found. Primary experiment indicates that our method has well results.
文摘Aiming at constructing the multi-knapsack model of collaborative portfolio configurations in multi-strategy oriented, the hybrid evolutionary algorithm was designed based on greedy method, combining with the organization of the multiple strategical guidance and multi-knapsack model. Furthermore, the organizing resource utility and risk management of portfolio were considered. The experiments were conducted on three main technological markets which contain communication, transportation and industry. The results demonstrated that the proposed model and algorithm were feasible and reliable.