The numerical manifold method(NMM)introduces the mathematical and physical cover to solve both continuum and discontinuum problems in a unified manner.In this study,the NMM for solving steady-state nonlinear heat cond...The numerical manifold method(NMM)introduces the mathematical and physical cover to solve both continuum and discontinuum problems in a unified manner.In this study,the NMM for solving steady-state nonlinear heat conduction problems is presented,and heat conduction problems consider both convection and radiation boundary conditions.First,the nonlinear governing equation of thermal conductivity,which is dependent on temperature,is transformed into the Laplace equation by introducing the Kirchhoff transformation.The transformation reserves linearity of both the Dirichlet and the Neumann boundary conditions,but the Robin and radiation boundary conditions remain nonlinear.Second,the NMM is employed to solve the Laplace equation using a simple iteration procedure because the nonlinearity focuses on parts of the problem domain boundaries.Finally,the temperature field is retrieved through the inverse Kirchhoff transformation.Typical examples are analyzed,demonstrating the advantages of the Kirchhoff transformation over the direct solution of nonlinear equations using the NewtonRaphson method.This study provides a new method for calculating nonlinear heat conduction.展开更多
This paper considers the long-time behavior for a system of coupled wave equations of higher-order Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of t...This paper considers the long-time behavior for a system of coupled wave equations of higher-order Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of the inertial manifold while such equations satisfy the spectral interval condition.展开更多
In this paper, we study the long-time behavior of the solution of the initial boundary value problem of the coupled Kirchhoff equations. Based on the relevant assumptions, the equivalent norm on E<sub>k</sub&...In this paper, we study the long-time behavior of the solution of the initial boundary value problem of the coupled Kirchhoff equations. Based on the relevant assumptions, the equivalent norm on E<sub>k</sub> is obtained by using the Hadamard graph transformation method, and the Lipschitz constant l<sub>F</sub><sub> </sub>of F is further estimated. Finally, a family of inertial manifolds satisfying the spectral interval condition is obtained.展开更多
This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of ...This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of fundamental solution(MFS),the boundary knot method(BKM),and the collocation Trefftz method(CTM)in conjunction with Kirchhoff transformation and various variable transformations.In the analysis,Laplace transform technique is employed to handle the time variable in transient heat conduction problem and the Stehfest numerical Laplace inversion is applied to retrieve the corresponding time-dependent solutions.The proposed MFS,BKM and CTM are mathematically simple,easyto-programming,meshless,highly accurate and integration-free.Three numerical examples of steady state and transient heat conduction in nonlinear FGMs are considered,and the results are compared with those from meshless local boundary integral equation method(LBIEM)and analytical solutions to demonstrate the effi-ciency of the present schemes.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52079002 and 52130905)。
文摘The numerical manifold method(NMM)introduces the mathematical and physical cover to solve both continuum and discontinuum problems in a unified manner.In this study,the NMM for solving steady-state nonlinear heat conduction problems is presented,and heat conduction problems consider both convection and radiation boundary conditions.First,the nonlinear governing equation of thermal conductivity,which is dependent on temperature,is transformed into the Laplace equation by introducing the Kirchhoff transformation.The transformation reserves linearity of both the Dirichlet and the Neumann boundary conditions,but the Robin and radiation boundary conditions remain nonlinear.Second,the NMM is employed to solve the Laplace equation using a simple iteration procedure because the nonlinearity focuses on parts of the problem domain boundaries.Finally,the temperature field is retrieved through the inverse Kirchhoff transformation.Typical examples are analyzed,demonstrating the advantages of the Kirchhoff transformation over the direct solution of nonlinear equations using the NewtonRaphson method.This study provides a new method for calculating nonlinear heat conduction.
文摘This paper considers the long-time behavior for a system of coupled wave equations of higher-order Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of the inertial manifold while such equations satisfy the spectral interval condition.
文摘In this paper, we study the long-time behavior of the solution of the initial boundary value problem of the coupled Kirchhoff equations. Based on the relevant assumptions, the equivalent norm on E<sub>k</sub> is obtained by using the Hadamard graph transformation method, and the Lipschitz constant l<sub>F</sub><sub> </sub>of F is further estimated. Finally, a family of inertial manifolds satisfying the spectral interval condition is obtained.
文摘This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of fundamental solution(MFS),the boundary knot method(BKM),and the collocation Trefftz method(CTM)in conjunction with Kirchhoff transformation and various variable transformations.In the analysis,Laplace transform technique is employed to handle the time variable in transient heat conduction problem and the Stehfest numerical Laplace inversion is applied to retrieve the corresponding time-dependent solutions.The proposed MFS,BKM and CTM are mathematically simple,easyto-programming,meshless,highly accurate and integration-free.Three numerical examples of steady state and transient heat conduction in nonlinear FGMs are considered,and the results are compared with those from meshless local boundary integral equation method(LBIEM)and analytical solutions to demonstrate the effi-ciency of the present schemes.