This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that ...This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels.展开更多
Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cok...Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.展开更多
Hydrogen desorption kinetics and characteristics,residual hydrogen content and activation energy of TC21 alloy were investigated by the constant volume method.Results show that hydrogen desorption temperature and init...Hydrogen desorption kinetics and characteristics,residual hydrogen content and activation energy of TC21 alloy were investigated by the constant volume method.Results show that hydrogen desorption temperature and initial hydrogen pressure affect hydrogen desorption characteristics of TC21 alloy.The hydrogen desorption process is mainly dominated by nucleation and growth process(kt=[-ln(1-α)]^(2/3)),chemical reaction process(kt=(1-α)^(-1/2))and three-dimensional diffusion process(kt=[1-(1-α)^(1/3)]^(1/2))when the hydrogenated TC21 alloy is dehydrogenated at temperatures of 700-940°C.When the hydrogenated TC21 alloy releases hydrogen,the following relationship exists among the rate constants of each process:k(chemical reaction process)>k(nucleation and growth process)>k(three-dimensional diffusion process).The residual hydrogen content of the hydrogenated TC21 alloy after hydrogen desorption decreases gradually with the increase in hydrogen desorption temperature,and increases gradually with the increase in the initial hydrogen pressure.The activation energy of TC21 alloy in the process of hydrogen desorption is about 26.663 kJ/mol.展开更多
The liquid Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys were undercooled to the maximum undercooling of 364 K(0.18 T_(L)),405 K(0.21 T_(L)),and 375 K(0.21 T_(L)),respectively,by using electrostatic levitation technique.The Zr...The liquid Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys were undercooled to the maximum undercooling of 364 K(0.18 T_(L)),405 K(0.21 T_(L)),and 375 K(0.21 T_(L)),respectively,by using electrostatic levitation technique.The Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys present only one recalescence during liquid/solid phase transition,while the Zr_(70)V_(30) alloy presents a transformation from two recalescence to one recalescence phenomenon with a critical undercooling of approximately 300 K.According to the LKT/BCT model,the calculated results of the primary β-Zr dendrite growth velocity in undercooled liquid Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys agree well with the experiments.The velocity inflection points at 119 K of Zr_(91.4)V_(8.6) alloy and 201 K of Zr_(83.5)V_(16.5) alloy could be explained by the competition between solutal undercooling control and thermal undercooling control modes.For Zr_(70)V_(30) alloy solidified in the P1 with twice recalescence,a critical second undercooling of 253 K and corresponding undercooling of 65 and 244 K are obtained.When the un-dercooling is in the range of 65-244 K,the second undercooling would be greater than 253 K,and the residual liquid phase would solidify into anomalous eutectic microstructure for Zr_(70)V_(30) alloy.The Vickers hardness of Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys all show a quadratic relationship with undercooling.Under electrostatic levitation condition,the mechanical property of Zr-V alloys could be significantly regulated through solidifying the alloys at different undercoolings.展开更多
The low-temperature embrittlement limits the service temperature of ferritic and duplex stainless steels.The effects of alloying elements added to Fe-Cr binary system on the low-temperature embrittlement have been rev...The low-temperature embrittlement limits the service temperature of ferritic and duplex stainless steels.The effects of alloying elements added to Fe-Cr binary system on the low-temperature embrittlement have been reviewed critically.Prior literature on the underlying phase transformation,i.e.,phase separation(PS)and changes of mechanical properties,is surveyed.The available literature indicates that the rate of PS is accelerated by Ni or Co in Fe-Cr binary system.The increased kinetics of PS also lead to an enhanced hardening rate during aging for Ni and Co alloyed Fe-Cr alloys.In low Cr(<17 wt.%)ferritic alloys,the additions of Al or Co can reduce embrittlement because these elements contribute to lowering the driving force for PS.The influence of other alloying elements such as Mo,Cu,Mn,Nb,and Ti is inconclusive but also discussed here.Thermodynamic and kinetic calculations were performed to evaluate current CALPHAD databases and to further investigate the thermodynamic and kinetic reasons for the effect of the additional alloying elements added to Fe-Cr alloy on PS.Some indications were provided for improving physically-based predictions of low-temperature embrittlement as well as opportunities to mitigate the phenomenon by alloying.展开更多
Al_(2)O_(3)and MgO serve as the primary gangue components in sintered ores,and they are critical for the formation of CaO-Fe_(2)O_(3)-xAl_(2)O_(3)(wt%,C-F-xA)and CaO-Fe_(2)O_(3)-xM gO(wt%,C-F-xM)systems,respectively.I...Al_(2)O_(3)and MgO serve as the primary gangue components in sintered ores,and they are critical for the formation of CaO-Fe_(2)O_(3)-xAl_(2)O_(3)(wt%,C-F-xA)and CaO-Fe_(2)O_(3)-xM gO(wt%,C-F-xM)systems,respectively.In this study,a nonisothermal crystallization thermodynamics behavior of C-F-xA and C-F-xM systems was examined using differential scanning calorimetry,and a phase identification and microstructure analysis for C-F-xA and C-F-xM systems were carried out by X-ray diffraction and scanning electron microscopy.Results showed that in C-F-2A and C-F-2M systems,the increased cooling rates promoted the precipitation of CaFe_(2)O_(4)(CF)but inhibited the formation of Ca_(2)Fe_(2)O_(5)(C2F).In addition,C-F-2A system exhibited a lower theoretical initial crystallization temperature(1566 K)compared to the C-F system(1578 K).This temperature further decreases to 1554 K and 1528 K in the C-F-4A and C-F-8A systems,respectively.However,in C-F-xM system,the increased MgO content raised the crystallization temperature.This is because that the enhanced precipitation of MF(a spinel phase mainly comprised Fe_(3)O_(4)and MgFe_(2)O_(4))and C2F phases suppressed the CF precipitation reaction.In kinetic calculations,the Ozawa method revealed the apparent activation energies of the C-F-2A and C-F-2M systems.Malek's method revealed that the crystallization process in C-F-2A system initially followed a logarithmic law(lnαor lnα2),later transitioning to a reaction order law((1-α)-1or(1-α)^(-1/2),n=2/3)or the lnα2function of the exponential law.In C-F-2M system,it consistently followed the sequencef(α)=(1-α)^(2)(αis the crystallization conversion rate;n is the Avrami constant;?(α)is the differential equations for the model function of C_(2)F and CF crystallization processes).展开更多
Iron ore pellets,as one of the main charges of blast furnaces,have a greater impact on the CO_(2)emission reduction and stable operation of blast furnaces.The isothermal reduction behavior of the pellets obtained from...Iron ore pellets,as one of the main charges of blast furnaces,have a greater impact on the CO_(2)emission reduction and stable operation of blast furnaces.The isothermal reduction behavior of the pellets obtained from a Chinese steel plant was studied in the gas mixtures of CO and N_(2).The results showed the reduction process is divided into two stages.The reduction in the initial stage(time t≤40 min)is cooperatively controlled by internal diffusion and interface chemical reactions with the activation energy of 30.19 and 16.67 kJ/mol,respectively.The controlling step of the reduction in the final stage(t>40 min)is internal diffusion with the activation energy of 34.60 kJ/mol.The reduction process can be described by two equations obtained from kinetic calculations.The reduction degree can be predicted under different temperatures and time,and the predicted results showed an excellent correlation with the experimental results.The reduction mechanisms were confirmed by the analysis of the scanning electron microscope equipped with an energy dispersive spectrometer and optical microscope.展开更多
As a refractory iron ore,the clean and efficient beneficiation of limonite is crucial for ensuring a sustainable long-term supply of iron metal.In this study,the microwave fluidization magnetization roasting of limoni...As a refractory iron ore,the clean and efficient beneficiation of limonite is crucial for ensuring a sustainable long-term supply of iron metal.In this study,the microwave fluidization magnetization roasting of limonite was explored.The micromorphology,microstructure,and mineral phase transformation of the roasted products were analyzed using a scanning electron microscope,an automatic surface area and porosity analyzer,an X-ray diffractometer,and a vibrating sample magnetometer.Kinetic analysis was also conducted to identify the factors limiting the roasting reaction rate.Microwave fluidization roasting significantly increased the specific surface area of limonite,increased the opportunity of contact between CO and limonite,and accelerated the transformation from FeO(OH)toα-Fe_(2)O_(3)and then to Fe_(3)O_(4).In addition,the water in the limonite ore and the newly formed magnetite exhibited a strong microwave absorption capacity,which has a certain activation effect on the reduction roasting of limonite.The saturation magnetization and maximum specific magnetization coefficient increased to 23.08 A·m^(2)·kg^(-1)and 2.50×10^(-4)m^(3)·kg^(-1),respectively.The subsequent magnetic separation of the reconstructed limonite yielded an iron concentrate with an Fe grade of 59.26wt%and a recovery of 90.07wt%.Kinetic analysis revealed that the reaction mechanism function model was consistent with the diffusion model(G(α)=α^(2)),with the mechanism function described as k=0.08208exp[-20.3441/(R_(g)T)].Therefore,microwave fluidization roasting shows significant potential in the beneficiation of limonite,offering a promising approach for the exploitation of refractory iron ores.展开更多
In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidati...In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidation methods such as ozonation system are used to manage MnS_(2)O_(6)in the leaching solution,replacing conventional methods.To ascertain the conversion rate and kinetics of MnS_(2)O_(6)during the ozonation process,we explored the factors influencing its removal rate,including ozone dosage,manganese dithionate concentration,sulfuric acid concentration,and reaction temperature.Batch experiments were conducted to determine the reaction rate constant of ozone(k)and activation energy(Ea)obtained from intermittent experimental data fitting,revealing a least-squares exponential conversion relationship between k and the MnS_(2)O_(6)removal amount,wherein an increase in the aforementioned factors led to an enhanced MnS_(2)O_(6)conversion rate,exceeding 99.3%.The formation mechanism of the ozone products proposed during the experiment was summarized and proposed as follows:1)Mn^(2+)was directly oxidized to MnO_(2),and 2)SO_(4)2−was obtained by the catalytic oxidation of S_(2)O_(6)^(2−)with HO•from O3 decomposition.According to the kinetics analysis,the pre-exponential factor and total activation energy of the ozonation kinetics equation were 1.0×10^(23) s^(−1) and 177.28 kJ/mol,respectively.Overall,the present study demonstrates that O_(3) as an oxidizing agent can effectively facilitate MnS_(2)O_(6)disproportionation while preventing the release of the secondary pollutant,SO_(2)gas.展开更多
Accurate prediction of the composition of pyrolysis products is the prerequisite for achieving directional regulation of organic-rich shale pyrolysis and conversion products.In this paper,the classical segmented pyrol...Accurate prediction of the composition of pyrolysis products is the prerequisite for achieving directional regulation of organic-rich shale pyrolysis and conversion products.In this paper,the classical segmented pyrolysis kinetics model and a new refined pyrolysis kinetics model were used to forecast the composition distribution of hydrocarbon generation products co-heated by supercritical water and medium and low maturity organic-rich shale.The prediction accuracy of the two reaction kinetics models for the composition of pyrolysis products of organic-rich shale was compared.The reaction path of hydrocarbon generation in centimeter sized organic-rich shale under the action of supercritical water was identified.The results show that the prediction accuracy of the classical segmented pyrolysis kinetics model was poor at the initial stage of the reaction,and gradually increased with increasing time.The prediction error can reach less than 25%when the reaction time was 12 h.The new refined model of reaction kinetics established is better than the classical reaction kinetics model in predicting the product distribution of pyrolysis oil and gas,and its prediction error is less than 14%in this paper.The reaction paths of hydrocarbon generation in centimeter sized organic-rich shale under supercritical water conversion mainly include organic-rich shale directly generates asphaltene and saturated hydrocarbon,asphaltene pyrolysis generates saturated hydrocarbon,aromatic hydrocarbon and resin,saturated hydrocarbon,aromatic hydrocarbon and resin polymerization generates asphaltene,and saturated hydrocarbon,resin and asphaltene generates gas.The reason for the difference of centimeter sized and millimeter sized medium and low maturity organic-rich shales hydrocarbon generation in supercritical water is that the increase of shale size promotes the reaction path of polymerization of saturated hydrocarbon and aromatic hydrocarbon to asphaltene.展开更多
The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and...The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and 2 were the perpendicular plate-likeε-carbides,while the granularε-carbides were Variant 3.The particle sizes of Variants 1 and 2 were usually larger than those of Variant 3.The mean aspect ratios of Variants 1 and 2 were 4.96,4.62 and 4.35 larger than those(1.72,1.63 and 1.56)for the granularε-carbides when coiled at 140,200 and 250℃,respectively.Thermodynamic analysis indicated that Variants 1 and 2 are easier to nucleate than Variant 3.The growing kinetic analysis implied that the relative nucleation time and precipitation time for Variants 1 and 2 were about 8 and 5 orders of magnitude less than those for Variant 3,respectively.The ripening kinetics further displayed that the ripening rate was similar for Variants 1,2 and 3.In addition,the dislocation density has weak influence onε-carbide nucleation.These findings suggest that the precipitation thermodynamic and kinetic models could be extended to second phase precipitation in other materials systems.Besides,nano-scaleε-carbides,fine block size and nano-twins,as well as medium-density dislocations,jointly caused the optimal match between strength and total elongation when coiled at 140℃.展开更多
Tantalum nitride is widely considered as a promising photoanode material for its suitable band structure as well as the high theoretical conversion efficiency in solar water splitting.However,it is limited to ineffici...Tantalum nitride is widely considered as a promising photoanode material for its suitable band structure as well as the high theoretical conversion efficiency in solar water splitting.However,it is limited to inefficient photoinduced electron–hole pair separation and interfacial dynamics in the photoelectrochemical oxygen evolution reaction.Herein,multiple layers including Ti_(x)Si_(y) and NiFeCoO_(x) were fabricated based on band engineering to regulate tandem electric states for efficient transfer of energy carriers.Besides,photothermal local surface plasmon resonance was introduced to accelerate the kinetics of photoelectrochemical reactions at the interface when the special Ag nanoparticles were loaded to extend the absorbance to near infrared light.Consequently,a recordable photocurrent density of 12.73 mA cm^(-2) has been achieved at 1.23 V versus RHE,approaching a theoretical limit of the tantalum nitride photoanode with full-spectrum solar utilization.Meanwhile,compared to the applied bias photon-to-current efficiency of 1.36%without photothermal factor,a high applied bias photonto-current efficiency of 2.27%could be raised by applying local surface plasmon resonance to photoelectrochemical oxygen evolution reaction.The efficient design could maximize the use of solar light via the classification of spectrum and,therefore,may spark more innovative ideas for the future design and development of the next-generation photoelectrode.展开更多
The vacuum volatilization kinetics of Pb in In-Pb solder was investigated.The results indicate a significant increase in the vacuum volatilization rates of Pb,25In-75Pb,40In-60Pb,and In with increasing temperatures fr...The vacuum volatilization kinetics of Pb in In-Pb solder was investigated.The results indicate a significant increase in the vacuum volatilization rates of Pb,25In-75Pb,40In-60Pb,and In with increasing temperatures from 923 to 1123 K,system pressure of 3 Pa and holding time of 30 min.The mass transfer coefficients and apparent activation energies of Pb and its alloys were determined at various temperatures.Additionally,a kinetics model was developed to describe Pb vacuum volatilization in high-temperature melts.It is obtained that the vapor mass transfer is the factor limiting the vacuum volatilization rates of Pb and In-Pb alloys under the above specified conditions.展开更多
To provide optimization strategies for chalcopyrite ammonia heap leaching processes,the key factors influencing chalcopyrite ammonia leaching kinetics were investigated under sealed reactor and controlled redox potent...To provide optimization strategies for chalcopyrite ammonia heap leaching processes,the key factors influencing chalcopyrite ammonia leaching kinetics were investigated under sealed reactor and controlled redox potential at ambient temperature.The results indicated that redox potential,particle size,and pH significantly affected chalcopyrite dissolution rates.The reaction orders with respect to particle size and hydroxyl ion concentration c(OH−)were determined to be−2.39 and 0.55,respectively.Temperature exhibited a marginal effect on chalcopyrite dissolution within the range of 25−45℃.The ammonium carbonate medium proved more favorable for chalcopyrite leaching than ammonium chloride and ammonium sulfate systems.Surface deposits on the residues were identified as porous iron oxides,predominantly hematite and ferrihydrite,which produced diffusion barriers during leaching.Shrinking core model analysis revealed that the second stage of reaction was controlled by product-layer diffusion,which was further confirmed by the low activation energy(10.18 kJ/mol).展开更多
The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error do...The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.展开更多
Enhancing homogenization efficiency and hot-workability is the key issue for wrought superalloys in the industry.A novel approach for simultaneous accelerating the homogenization kinetics and improving hot-workability...Enhancing homogenization efficiency and hot-workability is the key issue for wrought superalloys in the industry.A novel approach for simultaneous accelerating the homogenization kinetics and improving hot-workability via a simple way of prior hot-deformation was proposed,which was not widely accepted for wrought superalloys.The homogenization efficiency is increased by 40%-70%via performing 10%-20%prior hot-deformation.Both theoretical and experimental analyses revealed that the increment in homogenization efficiency is mainly attributed to the decrease in interdendritic-segregation spacing,and thus the necessary diffusion distance,rather than that of dislocations.In addition,dynamic and static recrystallizations occurred during the prior hot-deformation and diffusion-annealing processes,and the grains were significantly refined even after the homogenization.Furthermore,the size of the precipitates was refined as well.These enhanced the hot-workability of the homogenized ingot for the subsequent cogging process.展开更多
Utilizing calcium aluminate(CaAlO)as a catalyst in lignocellulosic biomass pyrolysis offers dual advantages of cost saving and mitigating environmental pollution from industrial waste.This study employs kinetic analys...Utilizing calcium aluminate(CaAlO)as a catalyst in lignocellulosic biomass pyrolysis offers dual advantages of cost saving and mitigating environmental pollution from industrial waste.This study employs kinetic analysis to validate the catalytic effect of CaAlO on biomass pyrolysis.Thermalgravimetric analysis of walnut shell pyrolysis was conducted,incorporating CaAlO,CaO,and Al_(2)O_(3) additives to examine catalytic pyrolysis and gas release characteristics.The results reveal that CaAlO exhibits a catalytic effect similar to that of CaO and Al_(2)O_(3),suggesting its potential as an effective catalyst.Activation energies obtained without additive and with CaAlO,CaO,and Al_(2)O_(3) by Friedman method are 184,178,158,and 176 kJ·mol^(-1),while by Flynn-Wall-Ozawa(FWO)method are 186,179,160,177 kJ·mol^(-1).Finally,distributed activation energy model(DAEM)analysis was performed,and the obtained parameters were successfully coupled into three-dimensional numerical simulation with some simplifications in the DAEM integration to reduce calculation cost,showing its potential applicability in biomass pyrolysis investigation.展开更多
The removal of H_(2)S from coke oven gas (COG) is an important issue for the further utilization of COG. Zeolites could be used for industrial desulfurization owing to their high thermal stability and regenerability. ...The removal of H_(2)S from coke oven gas (COG) is an important issue for the further utilization of COG. Zeolites could be used for industrial desulfurization owing to their high thermal stability and regenerability. However, further analysis on the kinetics of deep desulfurization using zeolites is necessary to provide relevant information for industrial design. In this study, the desulfurization breakthrough curves of faujasite (FAU) zeolite in COG were measured using a fixed bed reactor. The adsorption isotherm was investigated using the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich models. The adsorption saturated capacity of H_(2)S was inversely related to the temperature. The results show that the Langmuir model best fits the adsorption isotherm with a lower value of root-mean-square-error (RMSE) and Chi-Square (χ^(2)), and the calculated activation energy is 14.62 kJ·mol^(−1). The adsorption kinetics were investigated using pseudo-first-order (PFO), pseudo-second-order (PSO), Bangham and Weber-Morris models. The Bangham model fitted the kinetic data well, indicating that pore diffusion is an influential factor in the adsorption process. The Weber-Morris model suggests that the adsorption rate was not solely determined by the pore diffusion, but was also influenced by the active site on the FAU zeolite. The adsorption breakthrough curves under different gas flow rates were fitted using the bed depth service time (BDST) model, and it provides an accurate prediction of the breakthrough time with a small relative error. The results of thermodynamic analysis demonstrated the feasibility and spontaneity (ΔG<0) and exothermic (ΔH<0) nature of the adsorption process of the FAU zeolite for H_(2)S under COG.展开更多
Neodymium-iron-boron(Nd-Fe-B)sludge is an important secondary resource of rare-earth elements(REEs).However,the state-of-the-art recycling method,i.e.,HCl-preferential dissolution faces challenges such as slow leachin...Neodymium-iron-boron(Nd-Fe-B)sludge is an important secondary resource of rare-earth elements(REEs).However,the state-of-the-art recycling method,i.e.,HCl-preferential dissolution faces challenges such as slow leaching kinetics,excessive chemical consumption and wastewater generation.In this work,the in situ anodic leaching of Nd-Fe-B sludge was developed to selectively recover REEs with high efficiency.The leaching rates of the REEs are 2.4-9.0 times higher using the in situ anodic leaching at the current density from 10 to 40 mA/cm^(2)than using conventional chemical leaching under the maintained pH of 3.7.Mechanism studies reveal that the anode-generated H~+plays the key role during the in situ anodic leaching process that locally increases the H^(+)concentration at the interface of sludge particles,accele rating the leaching kinetics.By achieving a total leaching efficiency of Nd-Fe-B sludge close to 100%and the Fe deposition efficiency in the range of 70.9%-74.3%,selective leaching of REEs is successfully realized and thus largely reduces chemical consumption.Additionally,a two-step recycling route involving electrolysis-selective precipitation was proposed that enables a stable REEs recovery of 92.2%with recyclable electrolyte.This study provides a novel and environmentally-friendly strategy for the efficient recovery of REEs from secondary resources.展开更多
Hexafluoropropylene oxide(HFPO)is a crucial fluorinated chemical mainly synthesized from hexafluoropropylene(HFP)through the oxidation of oxygen.However,the reaction network and kinetic characteristics are not fully u...Hexafluoropropylene oxide(HFPO)is a crucial fluorinated chemical mainly synthesized from hexafluoropropylene(HFP)through the oxidation of oxygen.However,the reaction network and kinetic characteristics are not fully understood yet,resulting in a lack of theoretical basis for synthesis process improvement.Here,the free radical reaction mechanism and complete reaction network involved in the noncatalytic oxidation of HFP to synthesize HFPO was explored by density functional theory.Transition state theory was employed to calculate the intrinsic reaction rate constants for elementary reactions.Based on theoretical reaction rate ratios,reaction pathways were selected,and a simplified reaction network was derived.It was found that byproducts were formed owing to the decomposition of HFPO and subsequent reactions with excessive oxygen while oxygen tended to participate more in the main reaction under oxygen-deficient conditions.The variations in reaction pathways occurring at different HFP/oxygen molar ratios was well elucidated by comparing with experimental data.This research establishes a robust theoretical foundation for optimizing and regulating the synthesis of HFPO.展开更多
基金supported by the National Natural Science Foundation of China(No.52271089)the financial support from the C hina Postdoctoral Science Foundation(No.2023M732192)。
文摘This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels.
基金supported by National Natural Science Foundation of China(22178002,22178001)Natural Science Foundation of Anhui Province(2308085Y19)Excellent Youth Research Project of Anhui Provincial Department of Education(2022AH030045).
文摘Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.
基金National Natural Science Foundation of China(52275328,51875157)。
文摘Hydrogen desorption kinetics and characteristics,residual hydrogen content and activation energy of TC21 alloy were investigated by the constant volume method.Results show that hydrogen desorption temperature and initial hydrogen pressure affect hydrogen desorption characteristics of TC21 alloy.The hydrogen desorption process is mainly dominated by nucleation and growth process(kt=[-ln(1-α)]^(2/3)),chemical reaction process(kt=(1-α)^(-1/2))and three-dimensional diffusion process(kt=[1-(1-α)^(1/3)]^(1/2))when the hydrogenated TC21 alloy is dehydrogenated at temperatures of 700-940°C.When the hydrogenated TC21 alloy releases hydrogen,the following relationship exists among the rate constants of each process:k(chemical reaction process)>k(nucleation and growth process)>k(three-dimensional diffusion process).The residual hydrogen content of the hydrogenated TC21 alloy after hydrogen desorption decreases gradually with the increase in hydrogen desorption temperature,and increases gradually with the increase in the initial hydrogen pressure.The activation energy of TC21 alloy in the process of hydrogen desorption is about 26.663 kJ/mol.
基金supported by the National Natural Science Foundation of China(Grant No.52088101)the Space Utilization System of China Manned Space Engineering(Grant No.KJZ-YY-NCL02)+1 种基金the National Key R&D Program of China(Grant No.2021YFA0716301)the Shannxi Key Science and Technology Program(Grant Nos.2023-ZDLGY-36,2024JC-ZDXM-24).
文摘The liquid Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys were undercooled to the maximum undercooling of 364 K(0.18 T_(L)),405 K(0.21 T_(L)),and 375 K(0.21 T_(L)),respectively,by using electrostatic levitation technique.The Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys present only one recalescence during liquid/solid phase transition,while the Zr_(70)V_(30) alloy presents a transformation from two recalescence to one recalescence phenomenon with a critical undercooling of approximately 300 K.According to the LKT/BCT model,the calculated results of the primary β-Zr dendrite growth velocity in undercooled liquid Zr_(91.4)V_(8.6) and Zr_(83.5)V_(16.5) alloys agree well with the experiments.The velocity inflection points at 119 K of Zr_(91.4)V_(8.6) alloy and 201 K of Zr_(83.5)V_(16.5) alloy could be explained by the competition between solutal undercooling control and thermal undercooling control modes.For Zr_(70)V_(30) alloy solidified in the P1 with twice recalescence,a critical second undercooling of 253 K and corresponding undercooling of 65 and 244 K are obtained.When the un-dercooling is in the range of 65-244 K,the second undercooling would be greater than 253 K,and the residual liquid phase would solidify into anomalous eutectic microstructure for Zr_(70)V_(30) alloy.The Vickers hardness of Zr_(100-x)V_(x)(x=8.6,16.5,30)alloys all show a quadratic relationship with undercooling.Under electrostatic levitation condition,the mechanical property of Zr-V alloys could be significantly regulated through solidifying the alloys at different undercoolings.
基金support from the China Scholarship Council(CSC No.201700260207)Swedish Iron and Steel Research Office(Jernkontoret)The EIT RawMaterials Upscaling project EndureIT(No.18317)is acknowledged by PH and WM for financial support.
文摘The low-temperature embrittlement limits the service temperature of ferritic and duplex stainless steels.The effects of alloying elements added to Fe-Cr binary system on the low-temperature embrittlement have been reviewed critically.Prior literature on the underlying phase transformation,i.e.,phase separation(PS)and changes of mechanical properties,is surveyed.The available literature indicates that the rate of PS is accelerated by Ni or Co in Fe-Cr binary system.The increased kinetics of PS also lead to an enhanced hardening rate during aging for Ni and Co alloyed Fe-Cr alloys.In low Cr(<17 wt.%)ferritic alloys,the additions of Al or Co can reduce embrittlement because these elements contribute to lowering the driving force for PS.The influence of other alloying elements such as Mo,Cu,Mn,Nb,and Ti is inconclusive but also discussed here.Thermodynamic and kinetic calculations were performed to evaluate current CALPHAD databases and to further investigate the thermodynamic and kinetic reasons for the effect of the additional alloying elements added to Fe-Cr alloy on PS.Some indications were provided for improving physically-based predictions of low-temperature embrittlement as well as opportunities to mitigate the phenomenon by alloying.
基金financially supported by the National Natural Science Foundation of China(Nos.52204331 and 52374315)the Major Industrial Innovation Plan of Anhui Provincial Development and the Reform Commission,China(No.AHZDCYCX-LSDT2023-01)。
文摘Al_(2)O_(3)and MgO serve as the primary gangue components in sintered ores,and they are critical for the formation of CaO-Fe_(2)O_(3)-xAl_(2)O_(3)(wt%,C-F-xA)and CaO-Fe_(2)O_(3)-xM gO(wt%,C-F-xM)systems,respectively.In this study,a nonisothermal crystallization thermodynamics behavior of C-F-xA and C-F-xM systems was examined using differential scanning calorimetry,and a phase identification and microstructure analysis for C-F-xA and C-F-xM systems were carried out by X-ray diffraction and scanning electron microscopy.Results showed that in C-F-2A and C-F-2M systems,the increased cooling rates promoted the precipitation of CaFe_(2)O_(4)(CF)but inhibited the formation of Ca_(2)Fe_(2)O_(5)(C2F).In addition,C-F-2A system exhibited a lower theoretical initial crystallization temperature(1566 K)compared to the C-F system(1578 K).This temperature further decreases to 1554 K and 1528 K in the C-F-4A and C-F-8A systems,respectively.However,in C-F-xM system,the increased MgO content raised the crystallization temperature.This is because that the enhanced precipitation of MF(a spinel phase mainly comprised Fe_(3)O_(4)and MgFe_(2)O_(4))and C2F phases suppressed the CF precipitation reaction.In kinetic calculations,the Ozawa method revealed the apparent activation energies of the C-F-2A and C-F-2M systems.Malek's method revealed that the crystallization process in C-F-2A system initially followed a logarithmic law(lnαor lnα2),later transitioning to a reaction order law((1-α)-1or(1-α)^(-1/2),n=2/3)or the lnα2function of the exponential law.In C-F-2M system,it consistently followed the sequencef(α)=(1-α)^(2)(αis the crystallization conversion rate;n is the Avrami constant;?(α)is the differential equations for the model function of C_(2)F and CF crystallization processes).
基金support from the National Natural Science Foundation of China(No.52174300)Natural Science Foundation of Chongqing,China(Nos.cstc2020jcyj-msxmX0583 and cstc2021jcyj-msxmX1004)+1 种基金Chongqing Talent Plan Project(No.cstc2021ycjh-bgzxm0211)Chongqing Doctoral"Through Train"Project(No.sl202100000343).T。
文摘Iron ore pellets,as one of the main charges of blast furnaces,have a greater impact on the CO_(2)emission reduction and stable operation of blast furnaces.The isothermal reduction behavior of the pellets obtained from a Chinese steel plant was studied in the gas mixtures of CO and N_(2).The results showed the reduction process is divided into two stages.The reduction in the initial stage(time t≤40 min)is cooperatively controlled by internal diffusion and interface chemical reactions with the activation energy of 30.19 and 16.67 kJ/mol,respectively.The controlling step of the reduction in the final stage(t>40 min)is internal diffusion with the activation energy of 34.60 kJ/mol.The reduction process can be described by two equations obtained from kinetic calculations.The reduction degree can be predicted under different temperatures and time,and the predicted results showed an excellent correlation with the experimental results.The reduction mechanisms were confirmed by the analysis of the scanning electron microscope equipped with an energy dispersive spectrometer and optical microscope.
基金financially supported by the National Key Research and Development Program of China(No.2021YFC2901000)the National Natural Science Foundation of China(No.52104249)+1 种基金the Liaoning Joint Fund General Support Program Project(No.2023-MSBA-126)the Fundamental Research Funds for the Central Universities(No.N2401019)。
文摘As a refractory iron ore,the clean and efficient beneficiation of limonite is crucial for ensuring a sustainable long-term supply of iron metal.In this study,the microwave fluidization magnetization roasting of limonite was explored.The micromorphology,microstructure,and mineral phase transformation of the roasted products were analyzed using a scanning electron microscope,an automatic surface area and porosity analyzer,an X-ray diffractometer,and a vibrating sample magnetometer.Kinetic analysis was also conducted to identify the factors limiting the roasting reaction rate.Microwave fluidization roasting significantly increased the specific surface area of limonite,increased the opportunity of contact between CO and limonite,and accelerated the transformation from FeO(OH)toα-Fe_(2)O_(3)and then to Fe_(3)O_(4).In addition,the water in the limonite ore and the newly formed magnetite exhibited a strong microwave absorption capacity,which has a certain activation effect on the reduction roasting of limonite.The saturation magnetization and maximum specific magnetization coefficient increased to 23.08 A·m^(2)·kg^(-1)and 2.50×10^(-4)m^(3)·kg^(-1),respectively.The subsequent magnetic separation of the reconstructed limonite yielded an iron concentrate with an Fe grade of 59.26wt%and a recovery of 90.07wt%.Kinetic analysis revealed that the reaction mechanism function model was consistent with the diffusion model(G(α)=α^(2)),with the mechanism function described as k=0.08208exp[-20.3441/(R_(g)T)].Therefore,microwave fluidization roasting shows significant potential in the beneficiation of limonite,offering a promising approach for the exploitation of refractory iron ores.
基金Project(2022M710619)supported by the Postdoctoral Science Foundation of ChinaProjects(2020YFH0213,2020YFG0039)supported by the Sichuan Science and Technology Program,China+1 种基金Projects(XJ2024001501,KCXTD2023-4)supported by the Basic Scientific Foundation and Innovation Team Funds of China West Normal UniversityProject(CSPC202403)supported by the Open Project Program of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province,China。
文摘In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidation methods such as ozonation system are used to manage MnS_(2)O_(6)in the leaching solution,replacing conventional methods.To ascertain the conversion rate and kinetics of MnS_(2)O_(6)during the ozonation process,we explored the factors influencing its removal rate,including ozone dosage,manganese dithionate concentration,sulfuric acid concentration,and reaction temperature.Batch experiments were conducted to determine the reaction rate constant of ozone(k)and activation energy(Ea)obtained from intermittent experimental data fitting,revealing a least-squares exponential conversion relationship between k and the MnS_(2)O_(6)removal amount,wherein an increase in the aforementioned factors led to an enhanced MnS_(2)O_(6)conversion rate,exceeding 99.3%.The formation mechanism of the ozone products proposed during the experiment was summarized and proposed as follows:1)Mn^(2+)was directly oxidized to MnO_(2),and 2)SO_(4)2−was obtained by the catalytic oxidation of S_(2)O_(6)^(2−)with HO•from O3 decomposition.According to the kinetics analysis,the pre-exponential factor and total activation energy of the ozonation kinetics equation were 1.0×10^(23) s^(−1) and 177.28 kJ/mol,respectively.Overall,the present study demonstrates that O_(3) as an oxidizing agent can effectively facilitate MnS_(2)O_(6)disproportionation while preventing the release of the secondary pollutant,SO_(2)gas.
基金support by the Basic Science Center Program of the Ordered Energy Conversion of the National Nature Science Foundation of China(NO.52488201)is gratefully acknowledged.
文摘Accurate prediction of the composition of pyrolysis products is the prerequisite for achieving directional regulation of organic-rich shale pyrolysis and conversion products.In this paper,the classical segmented pyrolysis kinetics model and a new refined pyrolysis kinetics model were used to forecast the composition distribution of hydrocarbon generation products co-heated by supercritical water and medium and low maturity organic-rich shale.The prediction accuracy of the two reaction kinetics models for the composition of pyrolysis products of organic-rich shale was compared.The reaction path of hydrocarbon generation in centimeter sized organic-rich shale under the action of supercritical water was identified.The results show that the prediction accuracy of the classical segmented pyrolysis kinetics model was poor at the initial stage of the reaction,and gradually increased with increasing time.The prediction error can reach less than 25%when the reaction time was 12 h.The new refined model of reaction kinetics established is better than the classical reaction kinetics model in predicting the product distribution of pyrolysis oil and gas,and its prediction error is less than 14%in this paper.The reaction paths of hydrocarbon generation in centimeter sized organic-rich shale under supercritical water conversion mainly include organic-rich shale directly generates asphaltene and saturated hydrocarbon,asphaltene pyrolysis generates saturated hydrocarbon,aromatic hydrocarbon and resin,saturated hydrocarbon,aromatic hydrocarbon and resin polymerization generates asphaltene,and saturated hydrocarbon,resin and asphaltene generates gas.The reason for the difference of centimeter sized and millimeter sized medium and low maturity organic-rich shales hydrocarbon generation in supercritical water is that the increase of shale size promotes the reaction path of polymerization of saturated hydrocarbon and aromatic hydrocarbon to asphaltene.
基金supported by the National Natural Science Foundation of China(No.52293395)National Key R&D Program of China(No.2021YFB3702403).
文摘The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and 2 were the perpendicular plate-likeε-carbides,while the granularε-carbides were Variant 3.The particle sizes of Variants 1 and 2 were usually larger than those of Variant 3.The mean aspect ratios of Variants 1 and 2 were 4.96,4.62 and 4.35 larger than those(1.72,1.63 and 1.56)for the granularε-carbides when coiled at 140,200 and 250℃,respectively.Thermodynamic analysis indicated that Variants 1 and 2 are easier to nucleate than Variant 3.The growing kinetic analysis implied that the relative nucleation time and precipitation time for Variants 1 and 2 were about 8 and 5 orders of magnitude less than those for Variant 3,respectively.The ripening kinetics further displayed that the ripening rate was similar for Variants 1,2 and 3.In addition,the dislocation density has weak influence onε-carbide nucleation.These findings suggest that the precipitation thermodynamic and kinetic models could be extended to second phase precipitation in other materials systems.Besides,nano-scaleε-carbides,fine block size and nano-twins,as well as medium-density dislocations,jointly caused the optimal match between strength and total elongation when coiled at 140℃.
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ24E060001the National Key Research and Development Project(2023YFC3710800)+2 种基金the National Natural Science Foundation of China under Grant No.52341602supported by funding from the Canada First Research Excellence Fund(CFRER-2015-00001)the University of Alberta’s Future Energy Systems research initiative(FES-T02-P03)。
文摘Tantalum nitride is widely considered as a promising photoanode material for its suitable band structure as well as the high theoretical conversion efficiency in solar water splitting.However,it is limited to inefficient photoinduced electron–hole pair separation and interfacial dynamics in the photoelectrochemical oxygen evolution reaction.Herein,multiple layers including Ti_(x)Si_(y) and NiFeCoO_(x) were fabricated based on band engineering to regulate tandem electric states for efficient transfer of energy carriers.Besides,photothermal local surface plasmon resonance was introduced to accelerate the kinetics of photoelectrochemical reactions at the interface when the special Ag nanoparticles were loaded to extend the absorbance to near infrared light.Consequently,a recordable photocurrent density of 12.73 mA cm^(-2) has been achieved at 1.23 V versus RHE,approaching a theoretical limit of the tantalum nitride photoanode with full-spectrum solar utilization.Meanwhile,compared to the applied bias photon-to-current efficiency of 1.36%without photothermal factor,a high applied bias photonto-current efficiency of 2.27%could be raised by applying local surface plasmon resonance to photoelectrochemical oxygen evolution reaction.The efficient design could maximize the use of solar light via the classification of spectrum and,therefore,may spark more innovative ideas for the future design and development of the next-generation photoelectrode.
基金financially supported by the Fundamental Research Project of Yunnan Province,China(Nos.202301AW070020,202201AT070229,202105AC160091,202202AB080018).
文摘The vacuum volatilization kinetics of Pb in In-Pb solder was investigated.The results indicate a significant increase in the vacuum volatilization rates of Pb,25In-75Pb,40In-60Pb,and In with increasing temperatures from 923 to 1123 K,system pressure of 3 Pa and holding time of 30 min.The mass transfer coefficients and apparent activation energies of Pb and its alloys were determined at various temperatures.Additionally,a kinetics model was developed to describe Pb vacuum volatilization in high-temperature melts.It is obtained that the vapor mass transfer is the factor limiting the vacuum volatilization rates of Pb and In-Pb alloys under the above specified conditions.
基金the financial supports from the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA0430304).
文摘To provide optimization strategies for chalcopyrite ammonia heap leaching processes,the key factors influencing chalcopyrite ammonia leaching kinetics were investigated under sealed reactor and controlled redox potential at ambient temperature.The results indicated that redox potential,particle size,and pH significantly affected chalcopyrite dissolution rates.The reaction orders with respect to particle size and hydroxyl ion concentration c(OH−)were determined to be−2.39 and 0.55,respectively.Temperature exhibited a marginal effect on chalcopyrite dissolution within the range of 25−45℃.The ammonium carbonate medium proved more favorable for chalcopyrite leaching than ammonium chloride and ammonium sulfate systems.Surface deposits on the residues were identified as porous iron oxides,predominantly hematite and ferrihydrite,which produced diffusion barriers during leaching.Shrinking core model analysis revealed that the second stage of reaction was controlled by product-layer diffusion,which was further confirmed by the low activation energy(10.18 kJ/mol).
文摘The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.
基金supported by the National Natural Science Foundation of China(No.51804232)Beijing Municipal Natural Science Foundation(No.2212041)+1 种基金supported by the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(FRF-IDRY-20-020)GIMRT Program of the Institute for Materials Research,Tohoku University(202303-RDKGE-0518).
文摘Enhancing homogenization efficiency and hot-workability is the key issue for wrought superalloys in the industry.A novel approach for simultaneous accelerating the homogenization kinetics and improving hot-workability via a simple way of prior hot-deformation was proposed,which was not widely accepted for wrought superalloys.The homogenization efficiency is increased by 40%-70%via performing 10%-20%prior hot-deformation.Both theoretical and experimental analyses revealed that the increment in homogenization efficiency is mainly attributed to the decrease in interdendritic-segregation spacing,and thus the necessary diffusion distance,rather than that of dislocations.In addition,dynamic and static recrystallizations occurred during the prior hot-deformation and diffusion-annealing processes,and the grains were significantly refined even after the homogenization.Furthermore,the size of the precipitates was refined as well.These enhanced the hot-workability of the homogenized ingot for the subsequent cogging process.
基金the financial support of the National Natural Science Foundation of China(22278432)National Key Research&Development Program of China(2022YFB3805602)Science Foundation of China University of Petroleum-Beijing(2462021BJRC001,2462021QNXZ007)。
文摘Utilizing calcium aluminate(CaAlO)as a catalyst in lignocellulosic biomass pyrolysis offers dual advantages of cost saving and mitigating environmental pollution from industrial waste.This study employs kinetic analysis to validate the catalytic effect of CaAlO on biomass pyrolysis.Thermalgravimetric analysis of walnut shell pyrolysis was conducted,incorporating CaAlO,CaO,and Al_(2)O_(3) additives to examine catalytic pyrolysis and gas release characteristics.The results reveal that CaAlO exhibits a catalytic effect similar to that of CaO and Al_(2)O_(3),suggesting its potential as an effective catalyst.Activation energies obtained without additive and with CaAlO,CaO,and Al_(2)O_(3) by Friedman method are 184,178,158,and 176 kJ·mol^(-1),while by Flynn-Wall-Ozawa(FWO)method are 186,179,160,177 kJ·mol^(-1).Finally,distributed activation energy model(DAEM)analysis was performed,and the obtained parameters were successfully coupled into three-dimensional numerical simulation with some simplifications in the DAEM integration to reduce calculation cost,showing its potential applicability in biomass pyrolysis investigation.
基金support of Ningbo Fareast Tech Catalyst Engineering Co.,Ltd,the National Natural Science Foundation of China(22478275)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-TD014).
文摘The removal of H_(2)S from coke oven gas (COG) is an important issue for the further utilization of COG. Zeolites could be used for industrial desulfurization owing to their high thermal stability and regenerability. However, further analysis on the kinetics of deep desulfurization using zeolites is necessary to provide relevant information for industrial design. In this study, the desulfurization breakthrough curves of faujasite (FAU) zeolite in COG were measured using a fixed bed reactor. The adsorption isotherm was investigated using the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich models. The adsorption saturated capacity of H_(2)S was inversely related to the temperature. The results show that the Langmuir model best fits the adsorption isotherm with a lower value of root-mean-square-error (RMSE) and Chi-Square (χ^(2)), and the calculated activation energy is 14.62 kJ·mol^(−1). The adsorption kinetics were investigated using pseudo-first-order (PFO), pseudo-second-order (PSO), Bangham and Weber-Morris models. The Bangham model fitted the kinetic data well, indicating that pore diffusion is an influential factor in the adsorption process. The Weber-Morris model suggests that the adsorption rate was not solely determined by the pore diffusion, but was also influenced by the active site on the FAU zeolite. The adsorption breakthrough curves under different gas flow rates were fitted using the bed depth service time (BDST) model, and it provides an accurate prediction of the breakthrough time with a small relative error. The results of thermodynamic analysis demonstrated the feasibility and spontaneity (ΔG<0) and exothermic (ΔH<0) nature of the adsorption process of the FAU zeolite for H_(2)S under COG.
基金Project supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2021BS02007,2022MS02014)the"Science and Technology Project of Ordos"Program(2021 CGI 17-9,2021 ZDI11-14)+2 种基金the National Natural Science Foundation of China(21971129,21961022,51903125,21661023)the"Inner Mongolia Autonomous Region 2022 Leading Talent Team of Science and Technology"Program(2022LJRC0008)China Postdoctoral Science Foundation(2018M640043,2019T120038)。
文摘Neodymium-iron-boron(Nd-Fe-B)sludge is an important secondary resource of rare-earth elements(REEs).However,the state-of-the-art recycling method,i.e.,HCl-preferential dissolution faces challenges such as slow leaching kinetics,excessive chemical consumption and wastewater generation.In this work,the in situ anodic leaching of Nd-Fe-B sludge was developed to selectively recover REEs with high efficiency.The leaching rates of the REEs are 2.4-9.0 times higher using the in situ anodic leaching at the current density from 10 to 40 mA/cm^(2)than using conventional chemical leaching under the maintained pH of 3.7.Mechanism studies reveal that the anode-generated H~+plays the key role during the in situ anodic leaching process that locally increases the H^(+)concentration at the interface of sludge particles,accele rating the leaching kinetics.By achieving a total leaching efficiency of Nd-Fe-B sludge close to 100%and the Fe deposition efficiency in the range of 70.9%-74.3%,selective leaching of REEs is successfully realized and thus largely reduces chemical consumption.Additionally,a two-step recycling route involving electrolysis-selective precipitation was proposed that enables a stable REEs recovery of 92.2%with recyclable electrolyte.This study provides a novel and environmentally-friendly strategy for the efficient recovery of REEs from secondary resources.
基金supported by the National Key Research&Development Program of China(2021YFB3803200)the National Natural Science Foundation of China(22288102).
文摘Hexafluoropropylene oxide(HFPO)is a crucial fluorinated chemical mainly synthesized from hexafluoropropylene(HFP)through the oxidation of oxygen.However,the reaction network and kinetic characteristics are not fully understood yet,resulting in a lack of theoretical basis for synthesis process improvement.Here,the free radical reaction mechanism and complete reaction network involved in the noncatalytic oxidation of HFP to synthesize HFPO was explored by density functional theory.Transition state theory was employed to calculate the intrinsic reaction rate constants for elementary reactions.Based on theoretical reaction rate ratios,reaction pathways were selected,and a simplified reaction network was derived.It was found that byproducts were formed owing to the decomposition of HFPO and subsequent reactions with excessive oxygen while oxygen tended to participate more in the main reaction under oxygen-deficient conditions.The variations in reaction pathways occurring at different HFP/oxygen molar ratios was well elucidated by comparing with experimental data.This research establishes a robust theoretical foundation for optimizing and regulating the synthesis of HFPO.