The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient...The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting.展开更多
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help...Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.展开更多
Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volu...Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volume.Herein,the effects of stirring rate,catalyst dosage,reaction temperature,and reaction time on the dehydration reaction of sorbitol were investigated.The yield of isosorbide up to 77.13%was obtained after 1.5 h of reaction time under conditions of 2 kPa,1.0%(mass)catalyst dosage,and 413.15 K.Based on the sorbitol dehydration reaction mechanism and a simplified reaction network,a kinetic model was developed in this work.A good agreement was accomplished between kinetic modeling and experiments between 393.15 and 423.15 K.The fitting results indicate that side reactions with higher activation energies are more affected by reaction temperatures,and the main side reaction that influences the selectivity of isosorbide is the oligomerization reaction among the primary dehydration products of sorbitol.The model fitting of the catalyst amounts effect shows that the effective concentration of sulfuric acid would be reduced with the increase of dosage due to the molecular agglomeration effect.Hopefully,the kinetic experiments and modeling results obtained in this work will be helpful to the design and optimization of the industrial sorbitol dehydration process.展开更多
Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomer...Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.展开更多
A three phase fluidized bed reactor was used to investigate the combined effect of adsorption and oxidation for phenolic wastewater treatment.Aqueous solutions containing 10 mg·L 1of phenol and ozone were continu...A three phase fluidized bed reactor was used to investigate the combined effect of adsorption and oxidation for phenolic wastewater treatment.Aqueous solutions containing 10 mg·L 1of phenol and ozone were continuously fed co-currently as upward flow into the reactor at constant flow rate of 2 and 1 L·min 1,respectively.The phenolic treatment results in seven cases were compared:(a)O3 only,(b)fresh granular activated carbon(GAC),(c) 1st reused GAC,(d)2nd reused GAC,(e)fresh GAC enhanced with O3,(f)1st reused GAC enhanced with O3,and (g)2nd reused GAC enhanced with O3.The phenolic wastewater was re-circulated through the reactor and its concentration was measured with respect to time.The experimental results revealed that the phenolic degradation using GAC enhanced with O3 provided the best result.The effect of adsorption by activated carbon was stronger than the effect of oxidation by ozone.Fresh GAC could adsorb phenol better than reused GAC.All cases of adsorption on GAC followed the Langmuir isotherm and displayed pseudo second order adsorption kinetics.Finally,a differential equation for the fluidized bed reactor model was used to describe the phenol concentration with respect to time for GAC enhanced with O3.The calculated results agree reasonably well with the experimental results.展开更多
This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimelric analysis (TGA) at 900, 950, ...This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimelric analysis (TGA) at 900, 950, and 1000℃ under CO2. With an increase in BC blending ra- tio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activa- tion energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, re- spectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature.展开更多
A semi-empirical adsorption kinetic model was proposed with the time compensation method to describe the chemisorption of SO2 in flue gas by carbon adsorbents for flue gas purification.The change in adsorption capacit...A semi-empirical adsorption kinetic model was proposed with the time compensation method to describe the chemisorption of SO2 in flue gas by carbon adsorbents for flue gas purification.The change in adsorption capacity and adsorption rate with time at different water vapor concentrations and different SO2 concentrations was studied.The model was in good agreement with experimental data.The surface reaction was probably the rate controlling step in the early stage for SO2 adsorption by ZL50 activated carbon.The parameters m and n in the nth order adsorption kinetic model were related to the magnitude of the time compensation and adsorption driving force,respectively.The change of parameter n with water vapor concentrations and sulfur dioxide concentrations was studied and some physical implications were given.The sum of square errors was less than 1.0 and the average absolute percentage deviations ranged from 0.5 to 3.2.The kinetic model was compared with other models in the literature.展开更多
This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial desig...This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.展开更多
To well describe the Ti(IV)-catalyzed H2O2/O3 reaction in aqueous solution, a kinetic model was established based on its mechanism. This model was then validated by the experiments of acetic acid degradation in aque...To well describe the Ti(IV)-catalyzed H2O2/O3 reaction in aqueous solution, a kinetic model was established based on its mechanism. This model was then validated by the experiments of acetic acid degradation in aqueous solution. It was found that the correlation coefficient of fittings was higher than 0.970. Three key operating factors affecting organic degradation in the Ti(IV)-catalyzed H2O2/O3 process were studied, including Ti(IV) concentration, dissolved ozone concentration and initial H2O2 concentration. Furthermore, some experiments were conducted to determine the rate constant for dissolved ozone decomposition initiated by Ti2O52+. The rate constant measured is almost in accord with the data analyzed by this kinetic model. The goodness of fittings demonstrated that this model could well describe the kinetics of the Ti(IV)-catalyzed H2O2/O3 reaction mathematically and chemically. Therefore, this kinetic model can provide some useful information to optimize the parameters in ozonation of water containing certain pollutants.展开更多
The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to descri...The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.展开更多
A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourl...A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourly space velocity(WHSV)into account is incorporated into the model,which reasonably accounts for the loss in activity because of coke deposition on the surface of catalyst during long-term operation.The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimiza- tion method.Sets of plant data at different operating conditions are applied to make sure validation of the model and the results show a good agreement between the model predictions and plant observations.The simulation analysis of key variables such as temperature and WHSV affecting process performance is discussed in detail,giv- ing the guidance to select suitable operating conditions.展开更多
In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical rea...In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical reaction are investigated.X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicate that the sizes of in-situ TiB2 nanoparticles are in the range of 80-120 nm.The results of ice-water quenched samples show that the whole process contains four stages,and the overall in-situ reaction time is 10 minutes.The in situ synthesis process is controlled mainly by chemical reaction in earlier stage (former 3 minutes),and by the particulate diffusing in later stage.The mechanism of key reaction between Al3Ti and AlB2 under high intensity ultrasonic in the 7055Al-K2TiF6-KBF4 system is the reaction-diffusion-crack-rediffusion.Furthermore,the reactive kinetic models in 7055Al-K2TiF6-KBF4 system are established.展开更多
An 8-lump kinetic model was proposed to predict the yields of propylene, ethylene and gasoline in the catalytic pyrolysis process of Daqing atmospheric residue. The model contains 21 kinetic parameters and one for cat...An 8-lump kinetic model was proposed to predict the yields of propylene, ethylene and gasoline in the catalytic pyrolysis process of Daqing atmospheric residue. The model contains 21 kinetic parameters and one for catalyst deactivation. A series of experiments were carded out in a riser reactor over catalyst named LTB-2. The ki- netic parameters were estimated by using sub-model method, and apparent activation energies were calculated according to the Arrhenius equation: The predicted yields coincided well with the experimental values. It shows that the kinetic parameters estimated by using the sub-model method were reliable.展开更多
On the basis of the analysis of the process of treating low concentrations of sulfur dioxide (SO2) gas in a fixed bed reactor, a kinetic model is proposed for this process after taking into consideration the effects...On the basis of the analysis of the process of treating low concentrations of sulfur dioxide (SO2) gas in a fixed bed reactor, a kinetic model is proposed for this process after taking into consideration the effects of internal diffusion, cell concentration, and production yield of microorganisms but ignoring the effect of external diffusion. The results obtained from the model simulation show that this model can indicate the influence of the process factors, Cin, η μmax, Cx, A, h, Kin, and Q, on the removal of SO2 and that the prediction of the results by this model is also satisfactory. This kinetic model can also provide some very important indications regarding the preparation of immobilized microorganisms, selection and domestication of proper species of microorganisms, as well as the design of bioreactors.展开更多
In this paper a novel 7-lump kinetic model is proposed to describe residual oil catalytic cracking, in which coke is lumped separately for accurate prediction. The reactor block is modeled as a combination of an ideal...In this paper a novel 7-lump kinetic model is proposed to describe residual oil catalytic cracking, in which coke is lumped separately for accurate prediction. The reactor block is modeled as a combination of an ideal pipe flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Unit factors are designed to correct the deviation between model predictions and practical plant data and tuned by modified Levenberg-Marquardt algorithm. The parameters estimated are reliable and good agreement between the model predictions and plant observations is observed. The model helps us get good insight into the per- formance of an industrial riser reactor that would be useful for optimization of residual oil catalytic cracking.展开更多
Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophi...Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3.day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m^3·day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics,biogas compositions, and biogas- lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 〉 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time.展开更多
In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two red...In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two reduced (One step & Four steps) models were examined for various IC engine designs. The detailed models (GRIMECH3.0, & UBC MECH2.0) and 4-step models successfully predicted the combustion while global model was unable to predict any combustion reaction. This study illustrated that the detailed model showed good concordances in the prediction of chamber pressure, temperature and major combustion species profiles. The detailed models also exhibited the capabilities to predict the pollutants formation in an IC engine while the reduced schemes showed failure in the prediction of pollutants emissions. Although, there are discrepancies among the profiles of four considered model, the detailed models (GRIMECH3.0 & UBC MECH2.0) produced the acceptable agreement in the species prediction and formation of pollutants.展开更多
At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present un...At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present understanding of low-mature gases is confined within some geological cases, and few laboratory studies have been reported. Therefore, the potential and characters of low- mature gases are not clear up to now. Here, two premature samples (one coal and the other shale) were pyrolyzed in a gold confined system. The gaseous components including hydrocarbon gases and non-hydrocarbon gases were analyzed. Based on kinetic modeling, the formation of low-mature gases was modeled. The results showed that during low mature stage, about 178 mL/gTOC gas was generated from the shale and 100 mL/gTOC from the coal. Two third to three fourth of the generated gases are non-hydrocarbon gases such as H2S and CO2. The total yields of C1-5 for the two samples are almost the same, 30-40 mL/gTOC, but individual gaseous hydrocarbon is different. The shale has much lower C1 but higher C2-5, whereas the coal has higher C1 but lower C2-5. Hydrocarbon gases formed during low-mature stage are very wet. The stable carbon isotope ratios of methane range from -40‰ to -50‰ (PDB), in good consistence with empiric criterion for low-mature gases summed up by the previous researchers. The generation characters suggest that the low-mature gases could be accumulated to form an economic gas reservoir, but most of them occur only as associated gases.展开更多
In order to investigate the hydrofining process of LCO for producing aromatics and gasoline,the selective hydrogenation of polycyclic aromatic hydrocarbons(PAHs),a major component of light cycle oil(LCO),was studied u...In order to investigate the hydrofining process of LCO for producing aromatics and gasoline,the selective hydrogenation of polycyclic aromatic hydrocarbons(PAHs),a major component of light cycle oil(LCO),was studied using a NiMoW/Al_(2)O_(3)catalyst.Based on the study of the reversible hydrogenation reaction,PAHs in the selective hydrogenation process could be effectively simulated by the modeled CH and CH_(2) groups,and the hydrodesulfurization and hydrodenitrogenation kinetic models could be further established in this process.The results showed that the kinetic models developed could fit the experimental data effectively and predict the content of S,N,and aromatics in the selective hydrogenation products of LCO.展开更多
Gamma-aminobutyric acid(GABA)is a natural non-protein functio nal amino acid,which has potential for fermentation industrial production by Lactobacillus brevis.This work investigated the batch fermentation process and...Gamma-aminobutyric acid(GABA)is a natural non-protein functio nal amino acid,which has potential for fermentation industrial production by Lactobacillus brevis.This work investigated the batch fermentation process and developed a kinetic model based on substrate restrictive model established by experimental data from L25(5~6)orthogonal experiments.In this study,the OD600 value of fermentation broth was fixed to constant after reaching its maximum because the microorganism death showed no effect on the enzyme activity of glutamate decarboxylase(GAD).As pH is one of the key parameters in fermentation process,a pH-dependent kinetic model based on radial basis function was developed to enhance the practicality of the model.Furthermore,as to decrease the deviations between the simulated curves and the experimental data,the rolling correction strategy with OD600 values that was measured in real-time was introduced into this work to modify the model.Finally,the accu racy of the rolling corrected and pH-dependent model was validated by good fitness between the simulated curves and data of the initial batch fermentation(pH 5.2).As a result,this pH-dependent kinetic model revealed that the optimal pH for biomass growth is 5.6-5.7 and for GABA production is about 5,respectively.Therefore,the developed model is practical and convenient for the instruction of GABA fermentation production,and it has instructive significance for the industrial scale.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-017A3)National Natural Science Foundation of China(No.51874026).
文摘The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting.
基金supported by National Key Research and Development Program of China (2023YFB3307800)National Natural Science Foundation of China (Key Program: 62136003, 62373155)+1 种基金Major Science and Technology Project of Xinjiang (No. 2022A01006-4)the Fundamental Research Funds for the Central Universities。
文摘Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.
文摘Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volume.Herein,the effects of stirring rate,catalyst dosage,reaction temperature,and reaction time on the dehydration reaction of sorbitol were investigated.The yield of isosorbide up to 77.13%was obtained after 1.5 h of reaction time under conditions of 2 kPa,1.0%(mass)catalyst dosage,and 413.15 K.Based on the sorbitol dehydration reaction mechanism and a simplified reaction network,a kinetic model was developed in this work.A good agreement was accomplished between kinetic modeling and experiments between 393.15 and 423.15 K.The fitting results indicate that side reactions with higher activation energies are more affected by reaction temperatures,and the main side reaction that influences the selectivity of isosorbide is the oligomerization reaction among the primary dehydration products of sorbitol.The model fitting of the catalyst amounts effect shows that the effective concentration of sulfuric acid would be reduced with the increase of dosage due to the molecular agglomeration effect.Hopefully,the kinetic experiments and modeling results obtained in this work will be helpful to the design and optimization of the industrial sorbitol dehydration process.
基金This work is supported by the National Natu- ral Science Foundation of China (No.51106146 and No.51036007), China Postdoctoral Science Foundation (No.20100480047 and No.201104326), Chinese Univer- sities Scientific Fund (No.WK2310000010), and Chinese Academy of Sciences.
文摘Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.
基金Supported by the National Nanotechnology Center(NANOTEC)(601003)the National Science and Technology Development Agency(NSTDA)
文摘A three phase fluidized bed reactor was used to investigate the combined effect of adsorption and oxidation for phenolic wastewater treatment.Aqueous solutions containing 10 mg·L 1of phenol and ozone were continuously fed co-currently as upward flow into the reactor at constant flow rate of 2 and 1 L·min 1,respectively.The phenolic treatment results in seven cases were compared:(a)O3 only,(b)fresh granular activated carbon(GAC),(c) 1st reused GAC,(d)2nd reused GAC,(e)fresh GAC enhanced with O3,(f)1st reused GAC enhanced with O3,and (g)2nd reused GAC enhanced with O3.The phenolic wastewater was re-circulated through the reactor and its concentration was measured with respect to time.The experimental results revealed that the phenolic degradation using GAC enhanced with O3 provided the best result.The effect of adsorption by activated carbon was stronger than the effect of oxidation by ozone.Fresh GAC could adsorb phenol better than reused GAC.All cases of adsorption on GAC followed the Langmuir isotherm and displayed pseudo second order adsorption kinetics.Finally,a differential equation for the fluidized bed reactor model was used to describe the phenol concentration with respect to time for GAC enhanced with O3.The calculated results agree reasonably well with the experimental results.
基金financially supported by the National Natural Science Foundation of China (No. 51104014)
文摘This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimelric analysis (TGA) at 900, 950, and 1000℃ under CO2. With an increase in BC blending ra- tio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activa- tion energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, re- spectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature.
文摘A semi-empirical adsorption kinetic model was proposed with the time compensation method to describe the chemisorption of SO2 in flue gas by carbon adsorbents for flue gas purification.The change in adsorption capacity and adsorption rate with time at different water vapor concentrations and different SO2 concentrations was studied.The model was in good agreement with experimental data.The surface reaction was probably the rate controlling step in the early stage for SO2 adsorption by ZL50 activated carbon.The parameters m and n in the nth order adsorption kinetic model were related to the magnitude of the time compensation and adsorption driving force,respectively.The change of parameter n with water vapor concentrations and sulfur dioxide concentrations was studied and some physical implications were given.The sum of square errors was less than 1.0 and the average absolute percentage deviations ranged from 0.5 to 3.2.The kinetic model was compared with other models in the literature.
基金the Tarbiat Modares University & Nuclear Science and Technology Research Institute for their financial support
文摘This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.
基金supported by the National Natural Science Foundation of China (No. 50578146, 20876151,21176225)the Natural Science Foundation of Zhejiang Province, China (No. Y5080178)
文摘To well describe the Ti(IV)-catalyzed H2O2/O3 reaction in aqueous solution, a kinetic model was established based on its mechanism. This model was then validated by the experiments of acetic acid degradation in aqueous solution. It was found that the correlation coefficient of fittings was higher than 0.970. Three key operating factors affecting organic degradation in the Ti(IV)-catalyzed H2O2/O3 process were studied, including Ti(IV) concentration, dissolved ozone concentration and initial H2O2 concentration. Furthermore, some experiments were conducted to determine the rate constant for dissolved ozone decomposition initiated by Ti2O52+. The rate constant measured is almost in accord with the data analyzed by this kinetic model. The goodness of fittings demonstrated that this model could well describe the kinetics of the Ti(IV)-catalyzed H2O2/O3 reaction mathematically and chemically. Therefore, this kinetic model can provide some useful information to optimize the parameters in ozonation of water containing certain pollutants.
基金the fund of"National‘Twelfth Five-Year’Plan for Science&Technology Support"(No.2012BAE05B04)"Research on Hydrocracking Catalysts Grading Technology"undertaken by Fushun Research Institute of Petroleum and Petrochemicals(FRIPP)supported by SINOPEC(No.101102)
文摘The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.
基金Supported by the National'Creative Research Groups Science Foundation of China (No.60421002) and priority supported financially by "the New Century 151 Talent Project" of Zhejiang Province.
文摘A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourly space velocity(WHSV)into account is incorporated into the model,which reasonably accounts for the loss in activity because of coke deposition on the surface of catalyst during long-term operation.The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimiza- tion method.Sets of plant data at different operating conditions are applied to make sure validation of the model and the results show a good agreement between the model predictions and plant observations.The simulation analysis of key variables such as temperature and WHSV affecting process performance is discussed in detail,giv- ing the guidance to select suitable operating conditions.
基金Funded by the National 863 High Technology Research Program(No.2007AA03Z548)National Natural Science Foundation of China(No.50971066)+2 种基金Research Fund for the Doctoral Program of Higher Education of China (No.20070299004)Jiangsu Provincial ‘333’ Project of Training the High-level Talents Foundation (No.2008-46)Jiangsu Provincial Science Supporting Item (No.BE2009127)
文摘In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical reaction are investigated.X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicate that the sizes of in-situ TiB2 nanoparticles are in the range of 80-120 nm.The results of ice-water quenched samples show that the whole process contains four stages,and the overall in-situ reaction time is 10 minutes.The in situ synthesis process is controlled mainly by chemical reaction in earlier stage (former 3 minutes),and by the particulate diffusing in later stage.The mechanism of key reaction between Al3Ti and AlB2 under high intensity ultrasonic in the 7055Al-K2TiF6-KBF4 system is the reaction-diffusion-crack-rediffusion.Furthermore,the reactive kinetic models in 7055Al-K2TiF6-KBF4 system are established.
基金Supported by the National Natural Science Foundation of China (20490200), Ministry of Education of the People's Republic of China (NCET-04-0109) and Department of Science & Technology of Shandong Province (2006ZZ08).
文摘An 8-lump kinetic model was proposed to predict the yields of propylene, ethylene and gasoline in the catalytic pyrolysis process of Daqing atmospheric residue. The model contains 21 kinetic parameters and one for catalyst deactivation. A series of experiments were carded out in a riser reactor over catalyst named LTB-2. The ki- netic parameters were estimated by using sub-model method, and apparent activation energies were calculated according to the Arrhenius equation: The predicted yields coincided well with the experimental values. It shows that the kinetic parameters estimated by using the sub-model method were reliable.
基金This project was supported by the National Natural Science Foundation of China (2003E0027M)
文摘On the basis of the analysis of the process of treating low concentrations of sulfur dioxide (SO2) gas in a fixed bed reactor, a kinetic model is proposed for this process after taking into consideration the effects of internal diffusion, cell concentration, and production yield of microorganisms but ignoring the effect of external diffusion. The results obtained from the model simulation show that this model can indicate the influence of the process factors, Cin, η μmax, Cx, A, h, Kin, and Q, on the removal of SO2 and that the prediction of the results by this model is also satisfactory. This kinetic model can also provide some very important indications regarding the preparation of immobilized microorganisms, selection and domestication of proper species of microorganisms, as well as the design of bioreactors.
基金Project supported by the National Creative Research Groups Sci-ence Foundation of China (No. 60421002) and the "New Century 151 Talent" Project of Zhejiang Province, China
文摘In this paper a novel 7-lump kinetic model is proposed to describe residual oil catalytic cracking, in which coke is lumped separately for accurate prediction. The reactor block is modeled as a combination of an ideal pipe flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Unit factors are designed to correct the deviation between model predictions and practical plant data and tuned by modified Levenberg-Marquardt algorithm. The parameters estimated are reliable and good agreement between the model predictions and plant observations is observed. The model helps us get good insight into the per- formance of an industrial riser reactor that would be useful for optimization of residual oil catalytic cracking.
基金supported by the National Natural Science Foundation of China (No.NSFC20976069)the Fundamental Research Funds for the Central Universities,China (No.JUSRP111A12)+1 种基金the Higher School Science and Technology Innovation Project of Cultivating the Capital Project,China (No.708048)the Selfdetermined Research Program of Jiangnan University (No.JUSRP11006)
文摘Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3.day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m^3·day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics,biogas compositions, and biogas- lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 〉 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time.
文摘In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two reduced (One step & Four steps) models were examined for various IC engine designs. The detailed models (GRIMECH3.0, & UBC MECH2.0) and 4-step models successfully predicted the combustion while global model was unable to predict any combustion reaction. This study illustrated that the detailed model showed good concordances in the prediction of chamber pressure, temperature and major combustion species profiles. The detailed models also exhibited the capabilities to predict the pollutants formation in an IC engine while the reduced schemes showed failure in the prediction of pollutants emissions. Although, there are discrepancies among the profiles of four considered model, the detailed models (GRIMECH3.0 & UBC MECH2.0) produced the acceptable agreement in the species prediction and formation of pollutants.
基金supported by the CNPC Project(Grant No.06-01C-01-04)National Natural Science Foundation of China(Grant No.40603014).
文摘At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present understanding of low-mature gases is confined within some geological cases, and few laboratory studies have been reported. Therefore, the potential and characters of low- mature gases are not clear up to now. Here, two premature samples (one coal and the other shale) were pyrolyzed in a gold confined system. The gaseous components including hydrocarbon gases and non-hydrocarbon gases were analyzed. Based on kinetic modeling, the formation of low-mature gases was modeled. The results showed that during low mature stage, about 178 mL/gTOC gas was generated from the shale and 100 mL/gTOC from the coal. Two third to three fourth of the generated gases are non-hydrocarbon gases such as H2S and CO2. The total yields of C1-5 for the two samples are almost the same, 30-40 mL/gTOC, but individual gaseous hydrocarbon is different. The shale has much lower C1 but higher C2-5, whereas the coal has higher C1 but lower C2-5. Hydrocarbon gases formed during low-mature stage are very wet. The stable carbon isotope ratios of methane range from -40‰ to -50‰ (PDB), in good consistence with empiric criterion for low-mature gases summed up by the previous researchers. The generation characters suggest that the low-mature gases could be accumulated to form an economic gas reservoir, but most of them occur only as associated gases.
基金financially supported by the SINOPEC Research and Develepment Project (No.120051-1)
文摘In order to investigate the hydrofining process of LCO for producing aromatics and gasoline,the selective hydrogenation of polycyclic aromatic hydrocarbons(PAHs),a major component of light cycle oil(LCO),was studied using a NiMoW/Al_(2)O_(3)catalyst.Based on the study of the reversible hydrogenation reaction,PAHs in the selective hydrogenation process could be effectively simulated by the modeled CH and CH_(2) groups,and the hydrodesulfurization and hydrodenitrogenation kinetic models could be further established in this process.The results showed that the kinetic models developed could fit the experimental data effectively and predict the content of S,N,and aromatics in the selective hydrogenation products of LCO.
基金supported by the National Natural Science Foundation of China(21621004,22078239)the Beijing-Tianjin-Hebei Basic Research Cooperation Project(B2021210008)+1 种基金Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-KJGG-004)the Tianjin Development Program for Innovation and Entrepreneurship(2018)。
文摘Gamma-aminobutyric acid(GABA)is a natural non-protein functio nal amino acid,which has potential for fermentation industrial production by Lactobacillus brevis.This work investigated the batch fermentation process and developed a kinetic model based on substrate restrictive model established by experimental data from L25(5~6)orthogonal experiments.In this study,the OD600 value of fermentation broth was fixed to constant after reaching its maximum because the microorganism death showed no effect on the enzyme activity of glutamate decarboxylase(GAD).As pH is one of the key parameters in fermentation process,a pH-dependent kinetic model based on radial basis function was developed to enhance the practicality of the model.Furthermore,as to decrease the deviations between the simulated curves and the experimental data,the rolling correction strategy with OD600 values that was measured in real-time was introduced into this work to modify the model.Finally,the accu racy of the rolling corrected and pH-dependent model was validated by good fitness between the simulated curves and data of the initial batch fermentation(pH 5.2).As a result,this pH-dependent kinetic model revealed that the optimal pH for biomass growth is 5.6-5.7 and for GABA production is about 5,respectively.Therefore,the developed model is practical and convenient for the instruction of GABA fermentation production,and it has instructive significance for the industrial scale.