We propose a scheme to generate polarization-entangled multiphoton Greenberger-Horne^Zeilinger (GHZ) states based on weak cross-Kerr nonlinearity and subsequent homodyne measurement. It can also be generalized to pr...We propose a scheme to generate polarization-entangled multiphoton Greenberger-Horne^Zeilinger (GHZ) states based on weak cross-Kerr nonlinearity and subsequent homodyne measurement. It can also be generalized to produce maximally N-qubit entangled states. The success probabilities of our schemes are almost equal to 1.展开更多
In this paper the evolution characteristics of the fidelity of quantum information for the V-type three-level atom interacting with number state light field in Kerr meddium are investigated. It shows that the periodic...In this paper the evolution characteristics of the fidelity of quantum information for the V-type three-level atom interacting with number state light field in Kerr meddium are investigated. It shows that the periodicity of the evolutions of fidelity of quantum information is influenced by the Kerr coefficient, the photon number of the initial field and intensity of light. The evolutions of the fidelity of quantum information are modulated by the initial number state field. The Rabi oscillation frequency and the modulation frequency of fidelity for the field and the system vary with the value of the Kerr coefficient. The evolutions of fidelity of quantum information obviously show the quantum collapse and revival behaviours in the system of atom interacting with light field.展开更多
We propose a scheme for generating a genuine four-particle polarisation entangled state |χ^00) that has many interesting entanglement properties and potential applications in quantum information processing. In our ...We propose a scheme for generating a genuine four-particle polarisation entangled state |χ^00) that has many interesting entanglement properties and potential applications in quantum information processing. In our scheme, we use the weak cross-Kerr nonlinear interaction between field-modes and the non-demolition measurement method based on highly efficient homodyne detection, which is feasible under the current experiment conditions.展开更多
We propose a protocol to implement the nonlocal Bell-state measurement, which is nearly determinate with the help of weak cross-Kerr nonlinearities and quantum non-destructive photon number resolving detection. Based ...We propose a protocol to implement the nonlocal Bell-state measurement, which is nearly determinate with the help of weak cross-Kerr nonlinearities and quantum non-destructive photon number resolving detection. Based on the nonlocal Bell-state measurement, we implement the quantum information transfer from one place to another. The process is different from conventional teleportation but can be regarded as a novel form of teleportation without entangled channel and classic communication.展开更多
We propose a scheme for generating a hyperentangled four-photon cluster state that is simultaneously entangled in polarization modes and spatial modes. This scheme is based on linear optical elements, weak cross-Kerr ...We propose a scheme for generating a hyperentangled four-photon cluster state that is simultaneously entangled in polarization modes and spatial modes. This scheme is based on linear optical elements, weak cross-Kerr nonlinearity, and homodyne detection. Therefore, it is feasible with current experimental technology.展开更多
We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements, cross-Kerr n...We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements, cross-Kerr nonlinearity, and homodyne measurement, therefore it is feasible with current experimental technology, The success probability of our protocol is optimal, this property makes our protocol more efficient than others in the applications of quantum communication.展开更多
We propose a method to construct an optical cluster-state analyzer based on cross-Kerr nonlinearity combined with linear optics elements. In the scheme, we employ two four-qubit parity gates and the controlled phase g...We propose a method to construct an optical cluster-state analyzer based on cross-Kerr nonlinearity combined with linear optics elements. In the scheme, we employ two four-qubit parity gates and the controlled phase gate (CPG) from only the cross-Kerr nonlinearity and show that all the orthogonal four-qubit cluster states can be completely identified. The scheme is significant for the large-scale quantum communication and quantum information processing networks. In addition, the scheme is feasible and deterministic under current experimental conditions.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11074002)the Doctoral Foundation of the Ministry of Education of China (Grant No. 20103401110003)the Personal Development Foundation of Anhui Province ofChina (Grant No. 2008Z018)
文摘We propose a scheme to generate polarization-entangled multiphoton Greenberger-Horne^Zeilinger (GHZ) states based on weak cross-Kerr nonlinearity and subsequent homodyne measurement. It can also be generalized to produce maximally N-qubit entangled states. The success probabilities of our schemes are almost equal to 1.
文摘In this paper the evolution characteristics of the fidelity of quantum information for the V-type three-level atom interacting with number state light field in Kerr meddium are investigated. It shows that the periodicity of the evolutions of fidelity of quantum information is influenced by the Kerr coefficient, the photon number of the initial field and intensity of light. The evolutions of the fidelity of quantum information are modulated by the initial number state field. The Rabi oscillation frequency and the modulation frequency of fidelity for the field and the system vary with the value of the Kerr coefficient. The evolutions of fidelity of quantum information obviously show the quantum collapse and revival behaviours in the system of atom interacting with light field.
基金supported by the National Natural Science Foundation of China (Grant No.60978009 )the National Basic Research Program of China (Grant Nos.2009CB929604 and 2007CB925204)
文摘We propose a scheme for generating a genuine four-particle polarisation entangled state |χ^00) that has many interesting entanglement properties and potential applications in quantum information processing. In our scheme, we use the weak cross-Kerr nonlinear interaction between field-modes and the non-demolition measurement method based on highly efficient homodyne detection, which is feasible under the current experiment conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11064016)
文摘We propose a protocol to implement the nonlocal Bell-state measurement, which is nearly determinate with the help of weak cross-Kerr nonlinearities and quantum non-destructive photon number resolving detection. Based on the nonlocal Bell-state measurement, we implement the quantum information transfer from one place to another. The process is different from conventional teleportation but can be regarded as a novel form of teleportation without entangled channel and classic communication.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91121023)the National Natural Science Foundation of China(Grant Nos.60978009 and 61378012)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20124407110009)the"973"Project(Grant Nos.2011CBA00200 and 2013CB921804)the PCSIRT(Grant No.IRT1243)
文摘We propose a scheme for generating a hyperentangled four-photon cluster state that is simultaneously entangled in polarization modes and spatial modes. This scheme is based on linear optical elements, weak cross-Kerr nonlinearity, and homodyne detection. Therefore, it is feasible with current experimental technology.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11064016)
文摘We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements, cross-Kerr nonlinearity, and homodyne measurement, therefore it is feasible with current experimental technology, The success probability of our protocol is optimal, this property makes our protocol more efficient than others in the applications of quantum communication.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60667001 and 11165015)
文摘We propose a method to construct an optical cluster-state analyzer based on cross-Kerr nonlinearity combined with linear optics elements. In the scheme, we employ two four-qubit parity gates and the controlled phase gate (CPG) from only the cross-Kerr nonlinearity and show that all the orthogonal four-qubit cluster states can be completely identified. The scheme is significant for the large-scale quantum communication and quantum information processing networks. In addition, the scheme is feasible and deterministic under current experimental conditions.