期刊文献+
共找到184,377篇文章
< 1 2 250 >
每页显示 20 50 100
Structural Topology Design for Electromagnetic Performance Enhancement of Permanent-Magnet Machines 被引量:2
1
作者 Pengjie Xiang Liang Yan +3 位作者 Xiaoshuai Liu Xinghua He Nannan Du Han Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期411-432,共22页
Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and el... Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and electric traction systems.The PM machines are usually expected to have high torque/power density,low torque ripple,reduced rotor mass,a large constant power speed range or strong anti-magnetization capability to match different requirements of industrial applications.The structural topology of the electric machines,including stator/rotor arrangements and magnet patterns of rotor,is one major concern to improve their electromagnetic performance.However,systematic reviews of structural topology are seldom found in literature.Therefore,the objective of this paper is to summarize the stator/rotor arrangements and magnet patterns of the permanent-magnet brushless machines,in depth.Specifically,the stator/rotor arrangements of the PM machines including radial-flux,axialflux and emerging hybrid axial-radial flux configurations are presented,and pros and cons of these topologies are discussed regarding their electromagnetic performance.The magnet patterns including various surface-mounted and interior magnet patterns,such as parallel magnetization pole pattern,Halbach arrays,spoke-type designs and their variants are summarized,and the characteristics of those magnet patterns in terms of flux-focusing effect,magnetic self-shielding effect,torque ripple,reluctance torque,magnet utilization ratio,and anti-demagnetization capability are compared.This paper can provide guidance and suggestion for the structure selection and design of PM brushless machines for high-performance industrial applications. 展开更多
关键词 Actuators Robot joint Electric-vehicle motor Permanent-magnet machines Axial-flux PM machine Dualrotor machine Magnet patterns Torque density Torque ripple Power density
在线阅读 下载PDF
An Adaptive Cooperated Shuffled Frog-Leaping Algorithm for Parallel Batch Processing Machines Scheduling in Fabric Dyeing Processes
2
作者 Lianqiang Wu Deming Lei Yutong Cai 《Computers, Materials & Continua》 2025年第5期1771-1789,共19页
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ... Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility. 展开更多
关键词 Batch processing machine parallel machine scheduling shuffled frog-leaping algorithm fabric dyeing process machine eligibility
在线阅读 下载PDF
A Shufled Frog-Leaping Algorithm with Competition for Parallel Batch Processing Machines Scheduling in Fabric Dyeing Process
3
作者 Mingbo Li Deming Lei 《Computer Modeling in Engineering & Sciences》 2025年第5期1789-1808,共20页
As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that a... As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP. 展开更多
关键词 Batch processing machines shuffled frog-leaping algorithm COMPETITION parallel machines scheduling
在线阅读 下载PDF
Real-time monitoring of disc cutter wear in tunnel boring machines:A sound and vibration sensor-based approach with machine learning technique
4
作者 Mohammad Amir Akhlaghi Raheb Bagherpour Seyed Hadi Hoseinie 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1700-1722,共23页
Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter... Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time. 展开更多
关键词 TBM disc cutter WEAR SOUND VIBRATION machine learning Real-time wear estimation
在线阅读 下载PDF
A survey on Ultra Wide Band based localization for mobile autonomous machines
5
作者 Ning Xu Mingyang Guan Changyun Wen 《Journal of Automation and Intelligence》 2025年第2期82-97,共16页
The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide... The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide Band(UWB)technology has emerged as a promising candidate for addressing this need,offering high precision,immunity to multipath interference,and robust performance in challenging environments.In this comprehensive survey,we systematically explore UWB-based localization for mobile autonomous machines,spanning from fundamental principles to future trends.To the best of our knowledge,this review paper stands as the pioneer in systematically dissecting the algorithms of UWB-based localization for mobile autonomous machines,covering a spectrum from bottom-ranging schemes to advanced sensor fusion,error mitigation,and optimization techniques.By synthesizing existing knowledge,evaluating current methodologies,and highlighting future trends,this review aims to catalyze progress and innovation in the field,unlocking new opportunities for mobile autonomous machine applications across diverse industries and domains.Thus,it serves as a valuable resource for researchers,practitioners,and stakeholders interested in advancing the state-of-the-art UWB-based localization for mobile autonomous machines. 展开更多
关键词 Ultra Wide Band LOCALIZATION Mobile autonomous machines Error mitigation Optimization Sensor fusion
在线阅读 下载PDF
Active vibration control for rotating machines with current-controlled electrodynamic actuators and velocity feedback of the machine feet based on a generalized mathematical formulation
6
作者 Ulrich Werner 《Control Theory and Technology》 2025年第1期1-27,共27页
A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine... A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine feet vibrations is presented.First,a generalized mathematical formulation is derived based on a state-space description which can be used for different kinds of models(1D,2D,and 3D models).It is shown that under special boundary conditions,the control parameters can be directly implemented into the stiffness and damping matrices of the system.Based on the generalized mathematical formulation,an example of a rotating machine—described by a 2D model—with journal bearings,flexible rotor,current-controlled electrodynamic actuators,steel frame foundation,and velocity feedback of the machine feet vibrations is presented where the effectiveness of the described active vibration control system is demonstrated. 展开更多
关键词 Active vibration control Rotating machines Current-controlled electrodynamic actuators Steel frame foundation
原文传递
Fault diagnosis of railway switch machines based on VMD-SDP-CNN
7
作者 SONG Yakun FENG Qingsheng +1 位作者 XIAO Shuai LI Hong 《Journal of Measurement Science and Instrumentation》 2025年第2期291-301,共11页
The switch machine is a vital component in the railway system,playing a significant role in ensuring the safe operation of trains.To address the shortcomings of existing fault diagnosis methods for the switch machine ... The switch machine is a vital component in the railway system,playing a significant role in ensuring the safe operation of trains.To address the shortcomings of existing fault diagnosis methods for the switch machine and leveraging the strong anti-interference and high sensitivity characteristics of vibration signals,we proposed a VMD-SDP-CNN(Variational mode decomposition-Symmetric dot pattern-Convolutional neural network)fault diagnosis method based on switch machine vibration signals.Firstly,the vibration signal of the switch machine was decomposed by VMD to obtain several intrinsic mode function(IMF)components.Secondly,the SDP method was employed to transform the decomposed IMF components into two-dimensional images,and the issue of one-dimensional signal recognition was transformed into the issue of two-dimensional image recognition.Finally,a CNN was used to realize the fault diagnosis of the switch machine.The experimental results showed that the recognition accuracy of the five actual working conditions of the switch machine using this method was superior to that of typical deep learning and machine learning methods,verifying its practicability and effectiveness. 展开更多
关键词 switch machine rail transit TURNOUT intelligent diagnosis vibration signal signal decomposition deep learning
在线阅读 下载PDF
Real-time operational parameter recommendation system for tunnel boring machines:Application and performance analysis
8
作者 WANG Shuangjing WU Leijie LI Xu 《Journal of Mountain Science》 2025年第5期1819-1831,共13页
The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model... The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments. 展开更多
关键词 Tunnel Boring machine Similarity based method Boring indexes Operational parameters Realtime recommendation
原文传递
Five-phase Synchronous Reluctance Machines Equipped with a Novel Type of Fractional Slot Winding 被引量:2
9
作者 S.M.Taghavi Araghi A.Kiyoumarsi B.Mirzaeian Dehkordi 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期264-273,共10页
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are... Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation. 展开更多
关键词 Finite element analysis Five-phase machine Fractional slot concentrated winding(FSCW) machine slot/pole combination MMF harmonics Synchronous reluctance machine Winding factor
在线阅读 下载PDF
Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents 被引量:2
10
作者 Zhi-Hui Yu Ren-Qiang Yu +6 位作者 Xing-Yu Wang Wen-Yu Ren Xiao-Qin Zhang Wei Wu Xiao Li Lin-Qi Dai Ya-Lan Lv 《World Journal of Psychiatry》 SCIE 2024年第11期1696-1707,共12页
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base... BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls. 展开更多
关键词 Major depressive disorder ADOLESCENT Support vector machine machine learning Resting-state functional magnetic resonance imaging NEUROIMAGING BIOMARKER
暂未订购
Utility and Application of a Versatile Analytical Method for MMF Calculation in AC Machines 被引量:1
11
作者 Ze-Zheng Wu Robert Nilssen Jian-Xin Shen 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期22-31,共10页
A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method ha... A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method has been established in early literature. However, its practical applications and significance in advancing the analysis of AC machines need further elaboration. This paper aims to complement VAM by augmenting its theory, offering additional insights into its conclusions, as well as demonstrating its utility in assessing armature windings and its application of calculating torque for permanent magnet synchronous machines(PMSM). This work contributes to advancing the analysis of AC machines and underscores the potential for improved design and performance optimization. 展开更多
关键词 AC machine Analytical method Harmonic analysis MMF Magnetic field Torque calculation
在线阅读 下载PDF
Electromagnetic Performance Analysis of Variable Flux Memory Machines with Series-magnetic-circuit and Different Rotor Topologies 被引量:1
12
作者 Qiang Wei Z.Q.Zhu +4 位作者 Yan Jia Jianghua Feng Shuying Guo Yifeng Li Shouzhi Feng 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期3-11,共9页
In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies... In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions. 展开更多
关键词 Memory machine Permanent magnet Rotor topologies Series magnetic circuit Variable flux
在线阅读 下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation 被引量:1
13
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
在线阅读 下载PDF
Collective Molecular Machines: Multidimensionality and Reconfigurability
14
作者 Bin Wang Yuan Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期309-340,共32页
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generat... Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research.Effective progress has been made,attributed to advances in various fields such as supramolecular chemistry,biology and nanotechnology,and informatics.However,individual molecular machines are only capable of producing nanometer work and generally have only a single functionality.In order to address these problems,collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm.In this review,we comprehensively discuss recent developments in the collective behaviors of molecular machines.In particular,collective behavior is divided into two paradigms.One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials.The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations.We discuss design strategies for both modes and focus on the modulation of features and properties.Subsequently,in order to address existing challenges,the idea of transferring experience gained in the field of micro/nano robotics is presented,offering prospects for future developments in the collective behavior of molecular machines. 展开更多
关键词 Molecular machines Collective control Collective behaviors DNA Biomolecular motors
在线阅读 下载PDF
Differentially Private Support Vector Machines with Knowledge Aggregation
15
作者 Teng Wang Yao Zhang +2 位作者 Jiangguo Liang Shuai Wang Shuanggen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3891-3907,共17页
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most... With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection. 展开更多
关键词 Differential privacy support vector machine knowledge aggregation data utility
在线阅读 下载PDF
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
16
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
17
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
Machine learning of pyrite geochemistry reconstructs the multi-stage history of mineral deposits 被引量:1
18
作者 Pengpeng Yu Yuan Liu +5 位作者 Hanyu Wang Xi Chen Yi Zheng Wei Cao Yiqu Xiong Hongxiang Shan 《Geoscience Frontiers》 2025年第3期81-93,共13页
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite... The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits. 展开更多
关键词 machine learning Random forest Support vector machine PYRITE Multi-stage genesis Keketale deposit
在线阅读 下载PDF
Recent Advances in Video Coding for Machines Standard and Technologies
19
作者 ZHANG Qiang MEI Junjun +3 位作者 GUAN Tao SUN Zhewen ZHANG Zixiang YU Li 《ZTE Communications》 2024年第1期62-76,共15页
To improve the performance of video compression for machine vision analysis tasks,a video coding for machines(VCM)standard working group was established to promote standardization procedures.In this paper,recent advan... To improve the performance of video compression for machine vision analysis tasks,a video coding for machines(VCM)standard working group was established to promote standardization procedures.In this paper,recent advances in video coding for machine standards are presented and comprehensive introductions to the use cases,requirements,evaluation frameworks and corresponding metrics of the VCM standard are given.Then the existing methods are presented,introducing the existing proposals by category and the research progress of the latest VCM conference.Finally,we give conclusions. 展开更多
关键词 video coding for machines VCM video compression
在线阅读 下载PDF
A Comprehensive 3-Steps Methodology for Vibration-Based Fault Detection,Diagnosis and Localization in Rotating Machines
20
作者 Khalid M.Almutairi Jyoti K.Sinha 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第1期49-58,共10页
In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The pape... In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method. 展开更多
关键词 bearing faults fault diagnosis machine learning rotating machines rotor faults vibration analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部